采矿与安全工程学报
採礦與安全工程學報
채광여안전공정학보
JOURNAL OF MINING AND SAFETY ENGINEERING
2014年
6期
982-986,994
,共6页
杨更社%屈永龙%奚家米%陈新年%李博融
楊更社%屈永龍%奚傢米%陳新年%李博融
양경사%굴영룡%해가미%진신년%리박융
西部地区%白垩系地层%富水基岩%冻结法%冻结压力
西部地區%白堊繫地層%富水基巖%凍結法%凍結壓力
서부지구%백성계지층%부수기암%동결법%동결압력
western region%cretaceous strata%water-rich bedrock%freezing method%freezing pressure
为了解决我国西部白垩系富水基岩冻结法凿井的技术难题,采用振弦式传感器对甘肃某矿风立井基岩冻结压力及界面温度进行实测分析,研究了凿井期白垩系基岩冻结压力的变化规律、成因及不均匀性等。结果表明:凿井期间冻结压力分为快速上升、急速增长、缓慢升高、趋于稳定4个阶段;在同一水平其具有明显的不均匀性,且影响因素较多;其最终稳定值达1.708~2.047 MPa,小于西部基岩同深度最大理论经验值,也小于东部冲积层冻结压力上限值pω;两壁界面温度急速上升后快速降低,30 h 内各点达最高温42.4~59.4℃,同一点处前后降温差高达51.86~71.3℃,极不利于冻结壁和井壁的安全稳定;沿用东部的设计方法和经验,导致井壁过厚,易因温度应力产生环向裂隙,故西部煤矿立井井壁结构设计和施工仍存在可优化空间。
為瞭解決我國西部白堊繫富水基巖凍結法鑿井的技術難題,採用振絃式傳感器對甘肅某礦風立井基巖凍結壓力及界麵溫度進行實測分析,研究瞭鑿井期白堊繫基巖凍結壓力的變化規律、成因及不均勻性等。結果錶明:鑿井期間凍結壓力分為快速上升、急速增長、緩慢升高、趨于穩定4箇階段;在同一水平其具有明顯的不均勻性,且影響因素較多;其最終穩定值達1.708~2.047 MPa,小于西部基巖同深度最大理論經驗值,也小于東部遲積層凍結壓力上限值pω;兩壁界麵溫度急速上升後快速降低,30 h 內各點達最高溫42.4~59.4℃,同一點處前後降溫差高達51.86~71.3℃,極不利于凍結壁和井壁的安全穩定;沿用東部的設計方法和經驗,導緻井壁過厚,易因溫度應力產生環嚮裂隙,故西部煤礦立井井壁結構設計和施工仍存在可優化空間。
위료해결아국서부백성계부수기암동결법착정적기술난제,채용진현식전감기대감숙모광풍립정기암동결압력급계면온도진행실측분석,연구료착정기백성계기암동결압력적변화규률、성인급불균균성등。결과표명:착정기간동결압력분위쾌속상승、급속증장、완만승고、추우은정4개계단;재동일수평기구유명현적불균균성,차영향인소교다;기최종은정치체1.708~2.047 MPa,소우서부기암동심도최대이론경험치,야소우동부충적층동결압력상한치pω;량벽계면온도급속상승후쾌속강저,30 h 내각점체최고온42.4~59.4℃,동일점처전후강온차고체51.86~71.3℃,겁불리우동결벽화정벽적안전은정;연용동부적설계방법화경험,도치정벽과후,역인온도응력산생배향렬극,고서부매광립정정벽결구설계화시공잉존재가우화공간。
To solve the technological problems of mine construction by freezing of cretaceous wa-ter-rich bedrock in western region, by using the vibrating wire sensors to measure and analyze bedrock’s freezing pressure and interface temperature of air shaft in a Gansu mine, the change rules, causes and inhomogeneity on freezing pressure of cretaceous bedrock during shaft sinking have been studied. The results show that the freezing pressure contains four stages:rapid growth, dramatic increase, slow rise and gradual steadiness. It has obvious inhomogeneity at the same level and is caused by many factors. Its final stable value reaches 1.708-2.047 MPa, less than the maximal theoretical and empirical value of western bedrock at the same depth, and the upper limit of freezing pressure pωin eastern shock layer. The interface temperature of frozen wall and shaft lining rises sharply and then reduces quickly, with the maximum of each point reaching 42.4-59.4 ℃ within 30 h and the difference values 51.86-71.3 ℃after the temperature decrease, which is extremely unfavorable to the security and stability of the two wall. Following the eastern design methods and experiences tends to cause the wall to become much thicker and produce ringed temperature cracks because of temperature stress, so there still exists an op-timized space on structural design and construction of the western mine shaft.