高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
12期
3323-3330
,共8页
特高压(UHV)%输电线路%杆塔基础%接地电阻%电位分布%接触电势%现场测量
特高壓(UHV)%輸電線路%桿塔基礎%接地電阻%電位分佈%接觸電勢%現場測量
특고압(UHV)%수전선로%간탑기출%접지전조%전위분포%접촉전세%현장측량
ultra high voltage ( UHV )%transmission distribution%touch potential%field measurement line%tower footing%grounding resistance%potential
为掌握特高压输电线路杆塔基础的独立接地性能,指导特高压杆塔接地优化设计,对特高压杆塔典型基础和人工接地装置的结构进行了调研,采用CDEGS接地分析软件仿真计算了各类基础的自然接地电阻,分析了各种影响因素的作用,比较了典型接地装置的降阻效果,模拟了有无接地装置情况下杆塔附近的电位水平和分布特征。结果表明,土壤电阻率〈1000Ω·m时,大部分类型杆塔基础的自然接地电阻可以满足设计要求;土壤电阻率〉1500Ω·m时,一般杆塔基础的自然接地电阻难以满足要求,应加装人工接地装置甚至辅助降阻措施。加装人工接地装置具有减小最大地电位升和均匀周边电位的作用,仅有杆塔基础散流时,只有当土壤电阻率在数十Ω·m以下时才能满足接触电势的要求。采用现场测量结果对比了仿真计算的误差,结果表明仿真建模的方法是有效的,计算偏差在工程允许范围内。
為掌握特高壓輸電線路桿塔基礎的獨立接地性能,指導特高壓桿塔接地優化設計,對特高壓桿塔典型基礎和人工接地裝置的結構進行瞭調研,採用CDEGS接地分析軟件倣真計算瞭各類基礎的自然接地電阻,分析瞭各種影響因素的作用,比較瞭典型接地裝置的降阻效果,模擬瞭有無接地裝置情況下桿塔附近的電位水平和分佈特徵。結果錶明,土壤電阻率〈1000Ω·m時,大部分類型桿塔基礎的自然接地電阻可以滿足設計要求;土壤電阻率〉1500Ω·m時,一般桿塔基礎的自然接地電阻難以滿足要求,應加裝人工接地裝置甚至輔助降阻措施。加裝人工接地裝置具有減小最大地電位升和均勻週邊電位的作用,僅有桿塔基礎散流時,隻有噹土壤電阻率在數十Ω·m以下時纔能滿足接觸電勢的要求。採用現場測量結果對比瞭倣真計算的誤差,結果錶明倣真建模的方法是有效的,計算偏差在工程允許範圍內。
위장악특고압수전선로간탑기출적독립접지성능,지도특고압간탑접지우화설계,대특고압간탑전형기출화인공접지장치적결구진행료조연,채용CDEGS접지분석연건방진계산료각류기출적자연접지전조,분석료각충영향인소적작용,비교료전형접지장치적강조효과,모의료유무접지장치정황하간탑부근적전위수평화분포특정。결과표명,토양전조솔〈1000Ω·m시,대부분류형간탑기출적자연접지전조가이만족설계요구;토양전조솔〉1500Ω·m시,일반간탑기출적자연접지전조난이만족요구,응가장인공접지장치심지보조강조조시。가장인공접지장치구유감소최대지전위승화균균주변전위적작용,부유간탑기출산류시,지유당토양전조솔재수십Ω·m이하시재능만족접촉전세적요구。채용현장측량결과대비료방진계산적오차,결과표명방진건모적방법시유효적,계산편차재공정윤허범위내。
In order to master the independent grounding performance of the UHV transmission line tower footings, guiding the UHV transmission line grounding design, we investigated the typical structure of UHV tower footings and artificial grounding devices, calculated grounding resistance of various tower footings based on CDEGS, and analyzed various factors. The reduction in resistance of the grounding devices was compared, and potential level and distribution characteristics around the tower in the presence and absence of the grounding devices were simulated. The results show that, most types of tower footings meet the requirements of resistance design when soil resistivity is less than 1 000 Ω·m, most grounding footings cannot meet the requirements of resistance design and need artificial grounding devices or secondary resistance reduction measures when soil resistivity is larger. Artificial grounding devices reduce the max potential rise and the surrounding potential difference. The potential distribution with tower footings cannot meet the touch voltage goal expect the soil resistivity is very small. The simulated error are analyzed by comparing with field measurements, the results show that the modeling method is effective and the simulation deviation is within the allowable range.