逻辑学研究
邏輯學研究
라집학연구
SUN YATSEN UNIVERSITY FORUM
2012年
3期
11-23
,共13页
郑锡忠%大卫.阿布杜-玛拉克%梅根.吉莱斯皮
鄭錫忠%大衛.阿佈杜-瑪拉剋%梅根.吉萊斯皮
정석충%대위.아포두-마랍극%매근.길래사피
平面曲线%连续函数%参数化%闭区间%复杂性
平麵麯線%連續函數%參數化%閉區間%複雜性
평면곡선%련속함수%삼수화%폐구간%복잡성
平面曲线是指单位闭区间在连续函数映射下的影像。这样的函数叫做曲线的参数化。如果一条曲线有一个单调的参数化函数,该曲线是简单曲线。如果一条曲线有可计算的参数化函数,则相应的曲线是可计算的。Gu、LutzHMayordomo最近证明了,有些可计算的简单曲线没有可计算的参数化函数。这样的曲线叫做强迫折返的。本文探讨的是强迫折返的次数对曲线复杂性的影响。
平麵麯線是指單位閉區間在連續函數映射下的影像。這樣的函數叫做麯線的參數化。如果一條麯線有一箇單調的參數化函數,該麯線是簡單麯線。如果一條麯線有可計算的參數化函數,則相應的麯線是可計算的。Gu、LutzHMayordomo最近證明瞭,有些可計算的簡單麯線沒有可計算的參數化函數。這樣的麯線叫做彊迫摺返的。本文探討的是彊迫摺返的次數對麯線複雜性的影響。
평면곡선시지단위폐구간재련속함수영사하적영상。저양적함수규주곡선적삼수화。여과일조곡선유일개단조적삼수화함수,해곡선시간단곡선。여과일조곡선유가계산적삼수화함수,칙상응적곡선시가계산적。Gu、LutzHMayordomo최근증명료,유사가계산적간단곡선몰유가계산적삼수화함수。저양적곡선규주강박절반적。본문탐토적시강박절반적차수대곡선복잡성적영향。
A planar curve can be defined as the image of the unit interval under a continuous function which is so-called parametrizafion of the curve. The curves parameterized by injective continuous functions are called simple. If a curve has a computable parametrization, then it is called computable. Surprisingly, Gu, Lutz and Mayordomo show in [4] that there exists a computable simple curve which does not have any injective computable parametrization. That is, the computable parametrization of this curve must retrace the curve. In this paper, we first introduce different classes of computable curves according to the number of retracing allowed in a computable parametrization, then we show an infinite proper hierarchy of these classes. Therefore, the retracing number allowed in the computable parametrization can be used to measure the complexity of a computable curve.