广西民族大学学报:自然科学版
廣西民族大學學報:自然科學版
엄서민족대학학보:자연과학판
Journal of Guangxi University For Nationalities(Natural Science Edition)
2012年
3期
75-79
,共5页
量子点半导体光放大器%增益%放大的自发辐射%增益平坦
量子點半導體光放大器%增益%放大的自髮輻射%增益平坦
양자점반도체광방대기%증익%방대적자발복사%증익평탄
quantum dots semiconductor optical amplifier%gain%amplified spontaneous emission%gain flatness
从导带、价带和浸润层的能级跃迁出发,采用分段模型对量子点半导体光放大器的增益和自发辐射进行了数值研究.物理模型包括自发辐射行波方程和各能级栽流子与光子数速率方程.经过大量数值计算,得到基态电子占用概率随注入光脉冲的变化,以及增益动态过程(饱和与恢复)和输出光脉冲的时域波形畸变.进一步研究了量子点光放大器自发辐射谱和增益平坦性,结果表明自发辐射功率随输入信号功率增大而减小,引入合适的钳制光,可在20nm带宽内获得小于0.3dB的增益平坦度,或者40nm带宽内小于1.0dB.
從導帶、價帶和浸潤層的能級躍遷齣髮,採用分段模型對量子點半導體光放大器的增益和自髮輻射進行瞭數值研究.物理模型包括自髮輻射行波方程和各能級栽流子與光子數速率方程.經過大量數值計算,得到基態電子佔用概率隨註入光脈遲的變化,以及增益動態過程(飽和與恢複)和輸齣光脈遲的時域波形畸變.進一步研究瞭量子點光放大器自髮輻射譜和增益平坦性,結果錶明自髮輻射功率隨輸入信號功率增大而減小,引入閤適的鉗製光,可在20nm帶寬內穫得小于0.3dB的增益平坦度,或者40nm帶寬內小于1.0dB.
종도대、개대화침윤층적능급약천출발,채용분단모형대양자점반도체광방대기적증익화자발복사진행료수치연구.물리모형포괄자발복사행파방정화각능급재류자여광자수속솔방정.경과대량수치계산,득도기태전자점용개솔수주입광맥충적변화,이급증익동태과정(포화여회복)화수출광맥충적시역파형기변.진일보연구료양자점광방대기자발복사보화증익평탄성,결과표명자발복사공솔수수입신호공솔증대이감소,인입합괄적겸제광,가재20nm대관내획득소우0.3dB적증익평탄도,혹자40nm대관내소우1.0dB.
Based on the energy level transitions in the conduction band, the valence band, and the wetting layers, the spontaneous emission process and the gain dynamics in the quantum dots semiconductor optical amplifier (QD-SOA) is investigated by a numerical model, which includes a series of traveling-wave equations for the spontaneous emission, and a series of rate equations for the carriers and photons. The amplifier is split into a number of sections for the simulations of the carriers and photons evolution along the propagation distance in the QD-SOA. The dependence of the electron occupation probability of the ground state on the input optical pulse, hence the gain dynamics (saturation and recovery) and the distortion of the output optical pulse, are obtained with plenty of computations. The amplified spontaneous emission spectra and the gain flatness of the QD-SOA are simulated, and the results show that the ASE decreases with the input optical power, and the gain flatness will be less than 0.3 dB in a band of about 20 nm, or 1.0 dB in 40 nm.