高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
11期
3008-3014
,共7页
李自品%舒乃秋%李红玲%汪游胤
李自品%舒迺鞦%李紅玲%汪遊胤
리자품%서내추%리홍령%왕유윤
绝缘子%声发射信号%核主成分分析(KPCA)%随机森林%污秽放电%诊断
絕緣子%聲髮射信號%覈主成分分析(KPCA)%隨機森林%汙穢放電%診斷
절연자%성발사신호%핵주성분분석(KPCA)%수궤삼림%오예방전%진단
insulator%acoustic emission signal%kernel principle component analysis(KPCA)%random forests%polluted discharge%diagnosis
为了提高污秽绝缘子外绝缘状态的诊断准确度,利用绝缘子污秽放电时产生的声发射信号评定其外绝缘状态。通过绝缘子污秽试验,由高灵敏度声信号监测装置检测绝缘子的污秽放电声发射信号;对提取的声发射信号进行核主成分分析,将样本从低维的状态空间非线性的映射到高维核空间,在核空间采用随机森林方法训练得到分类器群,根据分类器群的分类结果对每个测试样本进行投票表决决定其最终分类。分析和诊断试验结果表明,声发射信号的3个原始特征量经核主成分分析后,变换为65个核特征量,有效地提高了分类器群之间的差异性。基于核主成分分析的随机森林模型的状态诊断结果具有很高的准确性。利用污秽放电声发射信号可进行污秽放电阶段的划分,以达到监测绝缘子的外绝缘状态的目的。
為瞭提高汙穢絕緣子外絕緣狀態的診斷準確度,利用絕緣子汙穢放電時產生的聲髮射信號評定其外絕緣狀態。通過絕緣子汙穢試驗,由高靈敏度聲信號鑑測裝置檢測絕緣子的汙穢放電聲髮射信號;對提取的聲髮射信號進行覈主成分分析,將樣本從低維的狀態空間非線性的映射到高維覈空間,在覈空間採用隨機森林方法訓練得到分類器群,根據分類器群的分類結果對每箇測試樣本進行投票錶決決定其最終分類。分析和診斷試驗結果錶明,聲髮射信號的3箇原始特徵量經覈主成分分析後,變換為65箇覈特徵量,有效地提高瞭分類器群之間的差異性。基于覈主成分分析的隨機森林模型的狀態診斷結果具有很高的準確性。利用汙穢放電聲髮射信號可進行汙穢放電階段的劃分,以達到鑑測絕緣子的外絕緣狀態的目的。
위료제고오예절연자외절연상태적진단준학도,이용절연자오예방전시산생적성발사신호평정기외절연상태。통과절연자오예시험,유고령민도성신호감측장치검측절연자적오예방전성발사신호;대제취적성발사신호진행핵주성분분석,장양본종저유적상태공간비선성적영사도고유핵공간,재핵공간채용수궤삼림방법훈련득도분류기군,근거분류기군적분류결과대매개측시양본진행투표표결결정기최종분류。분석화진단시험결과표명,성발사신호적3개원시특정량경핵주성분분석후,변환위65개핵특정량,유효지제고료분류기군지간적차이성。기우핵주성분분석적수궤삼림모형적상태진단결과구유흔고적준학성。이용오예방전성발사신호가진행오예방전계단적화분,이체도감측절연자적외절연상태적목적。
External insulation status assessment of contaminated insulator is proposed in this paper using the acoustic emission signals generated when the polluted insulator flashover discharges to improve the accuracy of diagnosis on insulator's external insulation.Through artificial contamination experiments,the acoustic emission signals generated from a polluted insulator were monitored by sound monitoring devices with high sensitivity.The acoustic emission signals were analyzed by using KPCA(kernel principle component analysis),so as to increase the number of features.Then random forests were constructed to get classifier groups in high dimensional kernel space.Finally,according to the voting result of the classifier groups,the final classification of the testing sample was gained.The analysis and experimental results show that,by converting the 3original features of the acoustic emission signals to 65kernel features through KPCA,the difference among classifier groups was improved effectively,and results of the state diagnosis based on KPCA and random forests had a higher accuracy.By using the acoustic emission signals generated from the polluted insulator discharge,the discharge phase can be distinguished,which realizes the monitoring of the external insulation status of insulators.