高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2012年
11期
2789-2796
,共8页
输电线路%导体表面电位梯度%误差%MATLAB%有限元法%数值计算
輸電線路%導體錶麵電位梯度%誤差%MATLAB%有限元法%數值計算
수전선로%도체표면전위제도%오차%MATLAB%유한원법%수치계산
transmission line%conductor surface voltage gradient%error%MATLAB%finite element method%numerical calculation
导线表面电位梯度是输电线路设计的重要参数,没有可靠的导线表面电位梯度值,就不可能设计出合理的线路,尤其是特高压输电线路。鉴于此,对目前采用的计算方法及其准确性进行了分析讨论,以实际电极结构的同心导体圆筒间的电场计算结果和两平行导体圆柱的电场计算结果为例,分析了采用MATLAB的"Partial Differ-ential Equation Toolbox"编程的导线表面电位梯度数值计算的计算误差及原因。研究认为,误差主要是由电位导出电场强度时,采用线性内插引起。解决的方法是通过"differenctiate"功能导出导线表面电位梯度,与解析解或较精确数值解进行对比,误差均〈2%。
導線錶麵電位梯度是輸電線路設計的重要參數,沒有可靠的導線錶麵電位梯度值,就不可能設計齣閤理的線路,尤其是特高壓輸電線路。鑒于此,對目前採用的計算方法及其準確性進行瞭分析討論,以實際電極結構的同心導體圓筒間的電場計算結果和兩平行導體圓柱的電場計算結果為例,分析瞭採用MATLAB的"Partial Differ-ential Equation Toolbox"編程的導線錶麵電位梯度數值計算的計算誤差及原因。研究認為,誤差主要是由電位導齣電場彊度時,採用線性內插引起。解決的方法是通過"differenctiate"功能導齣導線錶麵電位梯度,與解析解或較精確數值解進行對比,誤差均〈2%。
도선표면전위제도시수전선로설계적중요삼수,몰유가고적도선표면전위제도치,취불가능설계출합리적선로,우기시특고압수전선로。감우차,대목전채용적계산방법급기준학성진행료분석토론,이실제전겁결구적동심도체원통간적전장계산결과화량평행도체원주적전장계산결과위례,분석료채용MATLAB적"Partial Differ-ential Equation Toolbox"편정적도선표면전위제도수치계산적계산오차급원인。연구인위,오차주요시유전위도출전장강도시,채용선성내삽인기。해결적방법시통과"differenctiate"공능도출도선표면전위제도,여해석해혹교정학수치해진행대비,오차균〈2%。
The conductor surface voltage gradient is one of the important parameters in the transmission line design.It is impossible to design a reasonable transmission line if the surface voltage gradient is not accurate,especially for UHV transmission line.Thereby,the calculation method of the gradient and its accuracy are analyzed and discussed.The calculated results of actual electrode geometry such as the concentric electric field between the conductor cylinder and parallel conductor cylinder are used as an example to analyze the reason of the calculate error caused by MATLAB"Partial Differential Equation Toolbox".It is concluded that the cause of error is mainly derived from the linear interpolation method to calculate the field strength from potential.A solution of using the function"differenctiate"to derive the conductor surface field strength is proposed.The method is compared with the analytical solution or the more accurate numerical solution,and the results show that the error is within 2%.