模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2014年
5期
443-451
,共9页
张建朋%陈福才%李邵梅%刘力雄
張建朋%陳福纔%李邵梅%劉力雄
장건붕%진복재%리소매%류력웅
数据挖掘%近邻传播聚类%时态密度%模型重建%数据流
數據挖掘%近鄰傳播聚類%時態密度%模型重建%數據流
수거알굴%근린전파취류%시태밀도%모형중건%수거류
Data Mining%Affinity Propagation Clustering%Temporal Density%Model Reconstruction%Data Stream
为提高数据流聚类的精度和时效性,提出一种具有时态特征与近邻传播思想的高效数据流聚类算法( TCAPStream)。该算法利用改进的WAP将新检测到的类模式合并到聚类模型中,同时利用微簇时态密度表征数据流的时态演化特征,并提出在线动态删除机制对微簇进行维护,使算法模型既能体现数据流的时态特征,又能反映数据流的分布特性,得到更精确的聚类结果。实验结果表明,该算法在多个人工数据集和真实数据集上不仅具有良好的聚类效果,而且具有较好的伸缩性和可扩展性。
為提高數據流聚類的精度和時效性,提齣一種具有時態特徵與近鄰傳播思想的高效數據流聚類算法( TCAPStream)。該算法利用改進的WAP將新檢測到的類模式閤併到聚類模型中,同時利用微簇時態密度錶徵數據流的時態縯化特徵,併提齣在線動態刪除機製對微簇進行維護,使算法模型既能體現數據流的時態特徵,又能反映數據流的分佈特性,得到更精確的聚類結果。實驗結果錶明,該算法在多箇人工數據集和真實數據集上不僅具有良好的聚類效果,而且具有較好的伸縮性和可擴展性。
위제고수거류취류적정도화시효성,제출일충구유시태특정여근린전파사상적고효수거류취류산법( TCAPStream)。해산법이용개진적WAP장신검측도적류모식합병도취류모형중,동시이용미족시태밀도표정수거류적시태연화특정,병제출재선동태산제궤제대미족진행유호,사산법모형기능체현수거류적시태특정,우능반영수거류적분포특성,득도경정학적취류결과。실험결과표명,해산법재다개인공수거집화진실수거집상불부구유량호적취류효과,이차구유교호적신축성화가확전성。
To improve the accuracy and timeliness of data stream clustering, an efficient data stream clustering algorithm is proposed with temporal characteristics and affinity propagation methods ( TCAPStream) . The algorithm merges the newly detected class mode into clustering model by using the improved WAP algorithm, meanwhile, the temporal evolution characteristic of the data stream is reflected by using micro-cluster temporal density. Besides, the online dynamic deletion mechanism is proposed to maintain the micro-clusters. It makes the algorithm model reflecting both temporal and distribution characteristics of data stream to obtain more accurate clustering results. The experimental results show that the proposed algorithm not only has good clustering effect in several artificial datasets and real datasets, but also has good flexibility and extensibility.