模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2014年
5期
403-409
,共7页
脑电信号%双密度小波变换%消噪%邻域相关阈值处理
腦電信號%雙密度小波變換%消譟%鄰域相關閾值處理
뇌전신호%쌍밀도소파변환%소조%린역상관역치처리
Electroencephalogram ( EEG)%Double-Density Discrete Wavelet Transform%De-noising%Neighbor-Dependency Threshold Processing
为消除混杂在脑电信号( EEG)中的噪声,提出一种基于双密度小波邻域相关阈值处理的EEG消噪方法。利用双密度小波对EEG分解,得到多层的信号高频系数。根据小波系数的局部统计依赖性,运用邻域相关阈值处理算法进行收缩,将收缩后的小波系数进行重构得到消噪后的信号。对加噪标准信号和实测EEG的消噪实验结果表明,与一代离散小波和传统软阈值法相比,信噪比、均方根误差和最大误差3个消噪效果评价指标都有明显改善。
為消除混雜在腦電信號( EEG)中的譟聲,提齣一種基于雙密度小波鄰域相關閾值處理的EEG消譟方法。利用雙密度小波對EEG分解,得到多層的信號高頻繫數。根據小波繫數的跼部統計依賴性,運用鄰域相關閾值處理算法進行收縮,將收縮後的小波繫數進行重構得到消譟後的信號。對加譟標準信號和實測EEG的消譟實驗結果錶明,與一代離散小波和傳統軟閾值法相比,信譟比、均方根誤差和最大誤差3箇消譟效果評價指標都有明顯改善。
위소제혼잡재뇌전신호( EEG)중적조성,제출일충기우쌍밀도소파린역상관역치처리적EEG소조방법。이용쌍밀도소파대EEG분해,득도다층적신호고빈계수。근거소파계수적국부통계의뢰성,운용린역상관역치처리산법진행수축,장수축후적소파계수진행중구득도소조후적신호。대가조표준신호화실측EEG적소조실험결과표명,여일대리산소파화전통연역치법상비,신조비、균방근오차화최대오차3개소조효과평개지표도유명현개선。
To eliminate the noise mixed in Electroencephalogram ( EEG ) , an EEG de-noising method is proposed based on double-density discrete wavelet transform using neighbor-dependency thresholding. Firstly, high frequency coefficients of multilayer signals are obtained by double-density discrete wavelet decomposition. Then, the wavelet coefficients are shrunk with neighbor-dependency thresholding algorithm, which takes the statistical dependencies of the wavelet coefficients into account. Finally, the de-noising signal is obtained by reconstructing shrunk wavelet coefficients. The simulation results of the de-noising experiments on standard noise-adding signal and real EEG show that compared to the first generation discrete wavelet algorithm and traditional soft threshold methods, the proposed de-noising algorithm has the benefits of higher SNR, lower RMSE and Errmax .