农业科学与技术(英文版)
農業科學與技術(英文版)
농업과학여기술(영문판)
AGRICULTURAL SCIENCE & TECHNOLOGY
2014年
5期
751-755
,共5页
密码子%频率%层次聚类分析%BP神经网络法
密碼子%頻率%層次聚類分析%BP神經網絡法
밀마자%빈솔%층차취류분석%BP신경망락법
Codon%Frequency%Hierarchical clustering analysis,BP neural network
从 DNA序列片段个案中密码子分布密度角度出发,提取出DNA序列片段的特征,基于氨基酸分子中侧链基极性性质把氨基酸分成5大类,计算5大类出现的频率,这种考虑生物意义的特征提取方法不仅考虑碱基的含量,还在一定程度上考虑碱基的排列顺序,应用层次聚类分析方法和 BP神经网络法对DNA序列片段进行分类。结果表明,2类算法分类结果精度较高,且一致性也较高。说明这种特征提取法比传统的单纯考虑碱基的特征提取法效果更优。
從 DNA序列片段箇案中密碼子分佈密度角度齣髮,提取齣DNA序列片段的特徵,基于氨基痠分子中側鏈基極性性質把氨基痠分成5大類,計算5大類齣現的頻率,這種攷慮生物意義的特徵提取方法不僅攷慮堿基的含量,還在一定程度上攷慮堿基的排列順序,應用層次聚類分析方法和 BP神經網絡法對DNA序列片段進行分類。結果錶明,2類算法分類結果精度較高,且一緻性也較高。說明這種特徵提取法比傳統的單純攷慮堿基的特徵提取法效果更優。
종 DNA서렬편단개안중밀마자분포밀도각도출발,제취출DNA서렬편단적특정,기우안기산분자중측련기겁성성질파안기산분성5대류,계산5대류출현적빈솔,저충고필생물의의적특정제취방법불부고필감기적함량,환재일정정도상고필감기적배렬순서,응용층차취류분석방법화 BP신경망락법대DNA서렬편단진행분류。결과표명,2류산법분류결과정도교고,차일치성야교고。설명저충특정제취법비전통적단순고필감기적특정제취법효과경우。
The features of DNA sequence fragments were extracted from the distri-bution density of the condons in the individual cases of DNA sequence fragments. Based on the polarity of side chain radicals of amino acids molecules, the amino acids were classified into five categories, and the frequencies of these five cate-gories were calculated. This kind of feature extraction based on the biological meanings not only took the content of basic groups into consideration, but also con-sidered the marshal ing sequence of the basic groups. The hierarchical clustering analysis and BP neural network were used to classify the DNA sequence frag-ments. The results showed that the classification results of these two kinds of algo-rithms not only had high accuracy, but also had high consistence, indicating that this kind of feature extraction was superior over the traditional feature extraction which only took the features of basic groups into consideration.