纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2013年
4期
359-363
,共5页
拓扑空间%连通空间%θ-连通空间%局部θ-连通空间%θ-连通分支
拓撲空間%連通空間%θ-連通空間%跼部θ-連通空間%θ-連通分支
탁복공간%련통공간%θ-련통공간%국부θ-련통공간%θ-련통분지
topological space%connected space%θ-connected space%local θ-connected space%θ-component
θ-连通空间是比连通空间更广泛的一类空间,在前人的研究基础之上得到了局部θ-连通空间的充分必要条件,证明了局部θ-连通空间在商映射下是不变的,同时也得到了和空间⊕α∈A Xα与乘积空间∏s∈S Xs 是局部θ-连通空间的充分必要条件。
θ-連通空間是比連通空間更廣汎的一類空間,在前人的研究基礎之上得到瞭跼部θ-連通空間的充分必要條件,證明瞭跼部θ-連通空間在商映射下是不變的,同時也得到瞭和空間⊕α∈A Xα與乘積空間∏s∈S Xs 是跼部θ-連通空間的充分必要條件。
θ-련통공간시비련통공간경엄범적일류공간,재전인적연구기출지상득도료국부θ-련통공간적충분필요조건,증명료국부θ-련통공간재상영사하시불변적,동시야득도료화공간⊕α∈A Xα여승적공간∏s∈S Xs 시국부θ-련통공간적충분필요조건。
Every local connected space is local -connected space. And some sufficient and essential conditions of local -connected space are obtained based on previous research. It is also shown that local -connectedness is an invariant of quotient mappings. It also obtained that the sufficient and essential conditions of the sum space ⊕ 2A X and the Cartesian product Π s2S Xs are local -connected spaces.