南昌大学学报(理科版)
南昌大學學報(理科版)
남창대학학보(이과판)
JOURNAL OF NANCHANG UNIVERSITY(NATURAL SCIENCE)
2014年
2期
112-115
,共4页
郭新伟%王焱平%齐海涛
郭新偉%王焱平%齊海濤
곽신위%왕염평%제해도
迭代函数系统:Markov-Feller算子%不变概率测度%遍历性
迭代函數繫統:Markov-Feller算子%不變概率測度%遍歷性
질대함수계통:Markov-Feller산자%불변개솔측도%편력성
Iterated function systems%Markov-Feller operator%Invariant probability measures%Ergodicity
研究了定义在完备的可分度量空间上具有概率的无限迭代函数系统的遍历性质,证明了该系统的惟一遍历性,推广了 Elton的遍历定理。其证明初等简洁,不依赖于鞅论中的较为深刻的极限定理和Banach极限技术。
研究瞭定義在完備的可分度量空間上具有概率的無限迭代函數繫統的遍歷性質,證明瞭該繫統的惟一遍歷性,推廣瞭 Elton的遍歷定理。其證明初等簡潔,不依賴于鞅論中的較為深刻的極限定理和Banach極限技術。
연구료정의재완비적가분도량공간상구유개솔적무한질대함수계통적편력성질,증명료해계통적유일편력성,추엄료 Elton적편력정리。기증명초등간길,불의뢰우앙론중적교위심각적겁한정리화Banach겁한기술。
This study was designed to elucidate the ergodic properties of infinite iterated function systems with probabilities on complete separable metric space and prove the unique ergodicity for the system,which would further extend Elton’s ergodic theorem.The proofs were simple and elementary and did not reply on the profound limit theorem on martingale theory as well as Banach limit techenique.