武汉理工大学学报(信息与管理工程版)
武漢理工大學學報(信息與管理工程版)
무한리공대학학보(신식여관리공정판)
JOURNAL OF WUHAN AUTOMOTIVE POLYTECHNIC UNIVERSITY
2014年
3期
355-359
,共5页
夏凯%傅魁%刘李利
夏凱%傅魁%劉李利
하개%부괴%류리리
虚拟社区%链接预测%含权网络%网络演化%用户生成内容
虛擬社區%鏈接預測%含權網絡%網絡縯化%用戶生成內容
허의사구%련접예측%함권망락%망락연화%용호생성내용
virtual community%link prediction%weighted network%network evolution%user generated content
针对传统的基于节点相似性的链接预测方法存在链接预测指标仅考虑网络结构信息或者节点属性信息,以及链接预测指标静态处理节点之间关系的问题,提出了一种基于信息融合相似性算法的链接预测指标(similarity based on network evolution and user generated content , SNEUGC),该指标结合用户生成内容信息和网络演化信息对含权网络进行链接预测,以解决现有链接预测指标在含权网络环境下链接预测准确率低的问题。实验证明,该方法的准确率达到了80%,具有一定的可行性。
針對傳統的基于節點相似性的鏈接預測方法存在鏈接預測指標僅攷慮網絡結構信息或者節點屬性信息,以及鏈接預測指標靜態處理節點之間關繫的問題,提齣瞭一種基于信息融閤相似性算法的鏈接預測指標(similarity based on network evolution and user generated content , SNEUGC),該指標結閤用戶生成內容信息和網絡縯化信息對含權網絡進行鏈接預測,以解決現有鏈接預測指標在含權網絡環境下鏈接預測準確率低的問題。實驗證明,該方法的準確率達到瞭80%,具有一定的可行性。
침대전통적기우절점상사성적련접예측방법존재련접예측지표부고필망락결구신식혹자절점속성신식,이급련접예측지표정태처리절점지간관계적문제,제출료일충기우신식융합상사성산법적련접예측지표(similarity based on network evolution and user generated content , SNEUGC),해지표결합용호생성내용신식화망락연화신식대함권망락진행련접예측,이해결현유련접예측지표재함권망락배경하련접예측준학솔저적문제。실험증명,해방법적준학솔체도료80%,구유일정적가행성。
The traditional link prediction methods based on the similarity of nodes have several problems .Only the structure of network or the information of nodes were considered as link prediction indexes .In the prediction indexes the relationship be-tween two nodes was treated statically .A new link prediction index called SNEUGC on the basis of information fusion similarity algorithm was then proposed .The SNEUGC index makes link predictions in weighted networks considering both user generated content information and network evolution information , and can solve the problem of low prediction accuracy of those existed inde-xes in weighted networks .The result verifies that the accuracy of SNEUGC is up to 80%and the method is feasible .