武汉理工大学学报(信息与管理工程版)
武漢理工大學學報(信息與管理工程版)
무한리공대학학보(신식여관리공정판)
JOURNAL OF WUHAN AUTOMOTIVE POLYTECHNIC UNIVERSITY
2014年
3期
341-344,387
,共5页
刘平峰%朱孔真%杨柳%李伟
劉平峰%硃孔真%楊柳%李偉
류평봉%주공진%양류%리위
兴趣图谱%个性化推荐%云计算%本体
興趣圖譜%箇性化推薦%雲計算%本體
흥취도보%개성화추천%운계산%본체
interest graph%personalized recommendation%cloud computing%ontology
借鉴Web2.0、社交网络、复杂网络、本体论和云计算等理论,设计了基于用户兴趣图谱的个性化推荐系统结构,阐明了基于用户兴趣图谱的推荐原理,提出了用户兴趣图谱生成与集成方法,以及用户兴趣图谱的动态演化与反馈机制,提高了推荐系统的推荐质量和精度。
藉鑒Web2.0、社交網絡、複雜網絡、本體論和雲計算等理論,設計瞭基于用戶興趣圖譜的箇性化推薦繫統結構,闡明瞭基于用戶興趣圖譜的推薦原理,提齣瞭用戶興趣圖譜生成與集成方法,以及用戶興趣圖譜的動態縯化與反饋機製,提高瞭推薦繫統的推薦質量和精度。
차감Web2.0、사교망락、복잡망락、본체론화운계산등이론,설계료기우용호흥취도보적개성화추천계통결구,천명료기우용호흥취도보적추천원리,제출료용호흥취도보생성여집성방법,이급용호흥취도보적동태연화여반궤궤제,제고료추천계통적추천질량화정도。
Web2.0, social network, complex network, ontology theory and cloud computing were used as sources of refer-ence to design personalized recommendation system structure .The theory of recommendation based on user interest graph was ex-plained .The methods of user interest graph generation and integration were put forward ;dynamic evolution and feedback mecha-nism were discussed .The recommendation quality and accuracy of the recommendation system were improved .