塑性工程学报
塑性工程學報
소성공정학보
JOURNAL OF PLASTICITY ENGINEERING
2014年
3期
78-84
,共7页
20CrMnTiH钢%热压缩变形%动态再结晶模型%流变应力%微观组织演变
20CrMnTiH鋼%熱壓縮變形%動態再結晶模型%流變應力%微觀組織縯變
20CrMnTiH강%열압축변형%동태재결정모형%류변응력%미관조직연변
20CrMnTiH steel%hot compression%dynamic recrystallization model%flow stress%microstructure evolution
采用Gleeble-3500热模拟机对20CrMnTiH在温度为950℃~1150℃、应变速率为0.01s~5s-1、变形量为60%条件下进行等温压缩实验,研究热压缩变形过程中变形温度和应变速率对材料流变应力和微观组织演变的影响规律。在对实验数据回归分析的基础上,建立20CrMnTiH动态再结晶模型;将建立的材料模型导入有限元软件DEFORM-3D中,模拟热压缩过程中的动态再结晶。结果表明,升高变形温度和降低应变速率均有利于20CrMnTiH发生动态再结晶,变形后再结晶晶粒尺寸增大,且动态再结晶体积分数增加;模拟结果与实验结果吻合。
採用Gleeble-3500熱模擬機對20CrMnTiH在溫度為950℃~1150℃、應變速率為0.01s~5s-1、變形量為60%條件下進行等溫壓縮實驗,研究熱壓縮變形過程中變形溫度和應變速率對材料流變應力和微觀組織縯變的影響規律。在對實驗數據迴歸分析的基礎上,建立20CrMnTiH動態再結晶模型;將建立的材料模型導入有限元軟件DEFORM-3D中,模擬熱壓縮過程中的動態再結晶。結果錶明,升高變形溫度和降低應變速率均有利于20CrMnTiH髮生動態再結晶,變形後再結晶晶粒呎吋增大,且動態再結晶體積分數增加;模擬結果與實驗結果吻閤。
채용Gleeble-3500열모의궤대20CrMnTiH재온도위950℃~1150℃、응변속솔위0.01s~5s-1、변형량위60%조건하진행등온압축실험,연구열압축변형과정중변형온도화응변속솔대재료류변응력화미관조직연변적영향규률。재대실험수거회귀분석적기출상,건립20CrMnTiH동태재결정모형;장건립적재료모형도입유한원연건DEFORM-3D중,모의열압축과정중적동태재결정。결과표명,승고변형온도화강저응변속솔균유리우20CrMnTiH발생동태재결정,변형후재결정정립척촌증대,차동태재결정체적분수증가;모의결과여실험결과문합。
The hot compressive experiments of 20CrMnTiH steel were carried out at the temperatures from 950 ℃ to 1150℃ and strain rates from 0.01 -1 to 5s-1 and a height reduction of 60% on Gleeble-3500 thermo-simulation machine .The influence rules of the deformation temperature and strain rate on the flow stress and the microstructure evolution of 20CrMnTiH steel were inves-tigated . The dynamic recrystallization model was developed by means of regression analysis of the experiment data . The dynamic recrystallization process of 20CrMnTiH steel during hot compression was simulated by importing the developed material model in-to DEFORM-3D . The results show that both increasing deformation temperature and decreasing strain rate are helpful to the dy-namic recrystallization ,which results in the increase of the dynamic recrystallization grains size .The volume fraction of dynamic recrystallization increases with the increasing deformation temperature and decreasing strain rate . The simulation results well a-gree with the experimental results .