华南师范大学学报(自然科学版)
華南師範大學學報(自然科學版)
화남사범대학학보(자연과학판)
JOURNAL OF SOUTH CHINA NORMAL UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
3期
25-29
,共5页
Nevanlinna 值分布理论%高阶差分方程%非线性差分方程
Nevanlinna 值分佈理論%高階差分方程%非線性差分方程
Nevanlinna 치분포이론%고계차분방정%비선성차분방정
Nevanlinna's value distribution theory%high order difference equations%nonlinear difference equations
n利用亚纯函数的 Nevanlinna 值分布理论的差分模拟,研究了非线性高阶差分方程 P1(z)P 2 i =1(z + ci )=f (z)f(z)n 亚纯解的零点、极点收敛指数和增长级,其中 n 是一个正整数,ci (i =1,…,n)是非零复常数,P1(z)和P (z)是非零多项式.在给定条件下,得到了这类差分方程亚纯解的增长级的精确估计.2
n利用亞純函數的 Nevanlinna 值分佈理論的差分模擬,研究瞭非線性高階差分方程 P1(z)P 2 i =1(z + ci )=f (z)f(z)n 亞純解的零點、極點收斂指數和增長級,其中 n 是一箇正整數,ci (i =1,…,n)是非零複常數,P1(z)和P (z)是非零多項式.在給定條件下,得到瞭這類差分方程亞純解的增長級的精確估計.2
n이용아순함수적 Nevanlinna 치분포이론적차분모의,연구료비선성고계차분방정 P1(z)P 2 i =1(z + ci )=f (z)f(z)n 아순해적영점、겁점수렴지수화증장급,기중 n 시일개정정수,ci (i =1,…,n)시비령복상수,P1(z)화P (z)시비령다항식.재급정조건하,득도료저류차분방정아순해적증장급적정학고계.2
By utilizing the difference analogue of Nevanlinna's value distribution theory of meromorphic functions, the exponents of convergence of zeros,poles and the order of growth of meromorphic solutions of the nonlinear high order difference equation P1(z)n i = 1 (z + ci )= P2(z)f(z)n are studied,where n is a positive integer,ci(i = 1,…, f n)are non-vanishing complex constants,and P1(z),P2(z)are given non-vanishing polynomials. The accurate es-timate of the order of growth of meromorphic solutions to this difference equation is attained under the given condi-tions.