井冈山大学学报(社会科学版)
井岡山大學學報(社會科學版)
정강산대학학보(사회과학판)
JOURNAL OF JINGGANGSHAN UNIVERSITY
2014年
3期
76-80
,共5页
粒子群算法%IPSO%BP神经网络%证券投资组合
粒子群算法%IPSO%BP神經網絡%證券投資組閤
입자군산법%IPSO%BP신경망락%증권투자조합
Particle Swarm Optimizer algorithm%IPSO%BP Neural Networks%Portfolio Investment
采用人工神经网络对证券投资进行预测与分析的研究过程中,提高神经网络各个节点参数的优化能力是极其关键的。传统的神经网络存在学习速度慢、易陷入局部极小值、预测结果精度较低等缺点,一种改进型粒子群(Improved Particle Swarm Optimizer, IPSO)算法,可以优化BP (Back Propagation)神经网络,并将优化后的BP神经网络应用于优化证券投资组合中。实验结果表明:该研究方法能够在预测精度和稳定性方面明显优于传统的PSO-BP神经网络优化证券投资组合方法。
採用人工神經網絡對證券投資進行預測與分析的研究過程中,提高神經網絡各箇節點參數的優化能力是極其關鍵的。傳統的神經網絡存在學習速度慢、易陷入跼部極小值、預測結果精度較低等缺點,一種改進型粒子群(Improved Particle Swarm Optimizer, IPSO)算法,可以優化BP (Back Propagation)神經網絡,併將優化後的BP神經網絡應用于優化證券投資組閤中。實驗結果錶明:該研究方法能夠在預測精度和穩定性方麵明顯優于傳統的PSO-BP神經網絡優化證券投資組閤方法。
채용인공신경망락대증권투자진행예측여분석적연구과정중,제고신경망락각개절점삼수적우화능력시겁기관건적。전통적신경망락존재학습속도만、역함입국부겁소치、예측결과정도교저등결점,일충개진형입자군(Improved Particle Swarm Optimizer, IPSO)산법,가이우화BP (Back Propagation)신경망락,병장우화후적BP신경망락응용우우화증권투자조합중。실험결과표명:해연구방법능구재예측정도화은정성방면명현우우전통적PSO-BP신경망락우화증권투자조합방법。
In the artificial-neural- work-base forecast and analyses of portfolio investment, it is extremely important to improve the optimizing ability of each node parameters in neural network. Targeted to deal with traditional neural networks' shortcomings of slow learning speed, easy occurrence of local minimal value and lower prediction accuracy, we put forward an Improved Particle Swarm algorithm (Improved Particle Swarm Optimizer, IPSO), with which BP (Back Propagation) neural network is optimized and applied to optimal securities portfolio. The results show that this method is superior than traditional PSO-BP neural network optimization portfolio method.