计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
5期
312-315
,共4页
入侵检测模型%K-均值聚类%模糊神经网络%支持向量机%数据挖掘
入侵檢測模型%K-均值聚類%模糊神經網絡%支持嚮量機%數據挖掘
입침검측모형%K-균치취류%모호신경망락%지지향량궤%수거알굴
Intrusion diction system%K-means clustering%Fuzzy neural network%Support vector machine%Data mining
针对传统的入侵检测模型IDM(Intrusion Detection System)不能检测最新的入侵手段且系统的特征数据库需要频繁更新的问题,提出融合K-均值聚类、模糊神经网络和支持向量机等数据挖掘技术来构建IDM。首先,利用K-均值聚类将原始的训练集划分为不同的训练子集;然后,基于各训练子集训练各自的模糊神经网络模型,并通过模糊神经网络模型生成支持向量机的支持向量;最后,采用径向支持向量机检测入侵行为是否发生。在KDD CUP 1999数据集上的实验验证了所提模型的有效性及可靠性。实验结果表明,相比其他几种较为先进的检测方法,所提模型在入侵检测方面取得了更高的检测精度。
針對傳統的入侵檢測模型IDM(Intrusion Detection System)不能檢測最新的入侵手段且繫統的特徵數據庫需要頻繁更新的問題,提齣融閤K-均值聚類、模糊神經網絡和支持嚮量機等數據挖掘技術來構建IDM。首先,利用K-均值聚類將原始的訓練集劃分為不同的訓練子集;然後,基于各訓練子集訓練各自的模糊神經網絡模型,併通過模糊神經網絡模型生成支持嚮量機的支持嚮量;最後,採用徑嚮支持嚮量機檢測入侵行為是否髮生。在KDD CUP 1999數據集上的實驗驗證瞭所提模型的有效性及可靠性。實驗結果錶明,相比其他幾種較為先進的檢測方法,所提模型在入侵檢測方麵取得瞭更高的檢測精度。
침대전통적입침검측모형IDM(Intrusion Detection System)불능검측최신적입침수단차계통적특정수거고수요빈번경신적문제,제출융합K-균치취류、모호신경망락화지지향량궤등수거알굴기술래구건IDM。수선,이용K-균치취류장원시적훈련집화분위불동적훈련자집;연후,기우각훈련자집훈련각자적모호신경망락모형,병통과모호신경망락모형생성지지향량궤적지지향량;최후,채용경향지지향량궤검측입침행위시부발생。재KDD CUP 1999수거집상적실험험증료소제모형적유효성급가고성。실험결과표명,상비기타궤충교위선진적검측방법,소제모형재입침검측방면취득료경고적검측정도。
For the issues that traditional intrusion detection model (IDM)can not detect latest intrusion means and requires frequent update of its feature database,we propose to build IDM by fusing the data mining technologies of k-means clustering,fuzzy neural networks and support vector machine.First,the original training set is divided into different training subsets using k-means clustering.Then,each training subset trains its own fuzzy neural network model respectively based on itself and generates support vector of SVM through fuzzy neural network model.Finally,radial SVM is adopted to detect whether the intrusion action occurs.The effectiveness and reliability of the proposed model has been verified by experiments on KDD CUP 1999 dataset.Experimental results show that the proposed model achieves higher accuracy in intrusion detection comparing with some other advanced detection approaches.