计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
5期
282-284
,共3页
张赤%丰洪才%金凯%杨婷
張赤%豐洪纔%金凱%楊婷
장적%봉홍재%금개%양정
灰色关联%马氏距离%聚类分析%最近邻算法
灰色關聯%馬氏距離%聚類分析%最近鄰算法
회색관련%마씨거리%취류분석%최근린산법
Grey correlation%Mahalanobis distance%Cluster analysis%Nearest neighbour algorithm
数据缺失在各个研究领域中普遍存在,缺失的数据会对计算的性能与结果产生严重的影响。为提高填补缺失数据的准确度,提出一种基于聚类分析的缺失数据最近邻填补算法。该算法在对数据聚类分析后根据类别分配权重,在MGNN(Mahalanobis-Gray and Nearest Neighbor)算法的基础上改进了计算方法和填充值的计算方式。实验结果表明,该方法填补的准确度比传统KNN和MGN N算法要高。
數據缺失在各箇研究領域中普遍存在,缺失的數據會對計算的性能與結果產生嚴重的影響。為提高填補缺失數據的準確度,提齣一種基于聚類分析的缺失數據最近鄰填補算法。該算法在對數據聚類分析後根據類彆分配權重,在MGNN(Mahalanobis-Gray and Nearest Neighbor)算法的基礎上改進瞭計算方法和填充值的計算方式。實驗結果錶明,該方法填補的準確度比傳統KNN和MGN N算法要高。
수거결실재각개연구영역중보편존재,결실적수거회대계산적성능여결과산생엄중적영향。위제고전보결실수거적준학도,제출일충기우취류분석적결실수거최근린전보산법。해산법재대수거취류분석후근거유별분배권중,재MGNN(Mahalanobis-Gray and Nearest Neighbor)산법적기출상개진료계산방법화전충치적계산방식。실험결과표명,해방법전보적준학도비전통KNN화MGN N산법요고。
Data missing exists in various research fields universally and the missed data will cause serious impact on computational performance and effect.In order to improve the accuracy of missing data filling,we propose a cluster analysis-based nearest neighbour filling algorithm for the missing data.After analysing the cluster data,the algorithm assigns the weights according to the categories;moreover,it improves the calculation method and the calculation means of filling value based on the MGNN (Mahalanobis-gray and nearest neighbour) algorithm.Experimental results show that the filling accuracy of the method is higher than the traditional KNN algorithm and MGNN algorithm.