化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
6期
1961-1970
,共10页
制氢%碳氢化合物%反应吸附强化%水蒸气重整%热力学
製氫%碳氫化閤物%反應吸附彊化%水蒸氣重整%熱力學
제경%탄경화합물%반응흡부강화%수증기중정%열역학
hydrogen production%hydrocarbons%enhanced reactive sorption%steam reforming%thermodynamics
为拓宽反应吸附强化水蒸气重整制氢(ReSER)原料的应用范围,采用化工流程模拟软件Aspen Plus,针对包括C2H4、C2H6、C3H6、C3H8的C2/C3轻烃 ReSER制氢反应可行性和优化条件进行热力学分析计算。在选择的反应压力0.1~5 MPa,温度200~800℃,水碳摩尔比(S/C)1~8和吸附剂中氧化钙和原料碳摩尔比(Ca/C)0~5条件下进行热力学分析计算。计算结果表明:在优选的水碳比(S/C)4,钙碳比(Ca/C)2.5,温度200~650℃,压力0.1~1.8 MPa的条件下, C2H4、C2H6、C3H6、C3H8均可分别通过ReSER反应获得H2含量在95%以上的产物,产物中H2浓度均随着水碳比和钙碳比的增大而提高。在假设的水碳比4,钙碳比2.5条件下,当CO2脱除率达到0.9以上,C2H4、C2H6、C3H6、C3H8的反应温度分别高于250、400、250、350℃时,产物中H2摩尔分数均可达到95%以上,产物中的H2浓度随着反应温度的升高和CO2脱除率的增加而提高。当CO2脱除率低于0.9,产物H2摩尔分数要达到95%时,C2H4、C2H6、C3H6、C3H8的反应温度均需升高50℃。在相同长度C链的烃类中,烯烃比烷烃更容易发生ReSER反应。而原料的碳链越长,则越容易发生ReSER制氢反应。
為拓寬反應吸附彊化水蒸氣重整製氫(ReSER)原料的應用範圍,採用化工流程模擬軟件Aspen Plus,針對包括C2H4、C2H6、C3H6、C3H8的C2/C3輕烴 ReSER製氫反應可行性和優化條件進行熱力學分析計算。在選擇的反應壓力0.1~5 MPa,溫度200~800℃,水碳摩爾比(S/C)1~8和吸附劑中氧化鈣和原料碳摩爾比(Ca/C)0~5條件下進行熱力學分析計算。計算結果錶明:在優選的水碳比(S/C)4,鈣碳比(Ca/C)2.5,溫度200~650℃,壓力0.1~1.8 MPa的條件下, C2H4、C2H6、C3H6、C3H8均可分彆通過ReSER反應穫得H2含量在95%以上的產物,產物中H2濃度均隨著水碳比和鈣碳比的增大而提高。在假設的水碳比4,鈣碳比2.5條件下,噹CO2脫除率達到0.9以上,C2H4、C2H6、C3H6、C3H8的反應溫度分彆高于250、400、250、350℃時,產物中H2摩爾分數均可達到95%以上,產物中的H2濃度隨著反應溫度的升高和CO2脫除率的增加而提高。噹CO2脫除率低于0.9,產物H2摩爾分數要達到95%時,C2H4、C2H6、C3H6、C3H8的反應溫度均需升高50℃。在相同長度C鏈的烴類中,烯烴比烷烴更容易髮生ReSER反應。而原料的碳鏈越長,則越容易髮生ReSER製氫反應。
위탁관반응흡부강화수증기중정제경(ReSER)원료적응용범위,채용화공류정모의연건Aspen Plus,침대포괄C2H4、C2H6、C3H6、C3H8적C2/C3경경 ReSER제경반응가행성화우화조건진행열역학분석계산。재선택적반응압력0.1~5 MPa,온도200~800℃,수탄마이비(S/C)1~8화흡부제중양화개화원료탄마이비(Ca/C)0~5조건하진행열역학분석계산。계산결과표명:재우선적수탄비(S/C)4,개탄비(Ca/C)2.5,온도200~650℃,압력0.1~1.8 MPa적조건하, C2H4、C2H6、C3H6、C3H8균가분별통과ReSER반응획득H2함량재95%이상적산물,산물중H2농도균수착수탄비화개탄비적증대이제고。재가설적수탄비4,개탄비2.5조건하,당CO2탈제솔체도0.9이상,C2H4、C2H6、C3H6、C3H8적반응온도분별고우250、400、250、350℃시,산물중H2마이분수균가체도95%이상,산물중적H2농도수착반응온도적승고화CO2탈제솔적증가이제고。당CO2탈제솔저우0.9,산물H2마이분수요체도95%시,C2H4、C2H6、C3H6、C3H8적반응온도균수승고50℃。재상동장도C련적경류중,희경비완경경용역발생ReSER반응。이원료적탄련월장,칙월용역발생ReSER제경반응。
In order to extend the use of raw materials of reactive sorption enhanced reforming process (ReSER) for hydrogen production, a thermodynamic analysis on cock oven gas (COG) containing C2/C3 light hydrocarbons, such as C2H4, C2H6, C3H6, and C3H8, were carried out for the feasibility and optimization operation conditions by using simulation software Aspen Plus. The calculations are based on the system pressure of 0.1-5 MPa, reaction temperature of 200-800℃, steam to carbon molar ratio (S/C) of 1-8, and calcium oxide to carbon molar ratio (Ca/C) of 0-5. The calculation results show that the products with over 95% H2 can be obtained by ReSER process using COG as raw materials under the optimized reaction conditions of S/C of 4, Ca/C of 2.5, reaction temperature between 200℃ and 650℃, and system pressure between 0.1 and 1.8 MPa. The H2 content in products increases with the increase of S/C or Ca/C. For selected CO2 removal ratio over 0.9, the H2 molar fraction is over 95%when the reaction temperature of C2H4, C2H6, C3H6 and C3H8 is over 250℃, 400℃, 250℃and 350℃ respectively, at S/C of 4 and Ca/C of 2.5. For CO2 removal ratio lower than 0.9, the reaction temperature of C2H4, C2H6, C3H6 and C3H8 should be 50℃ higher for H2 molar fraction more than 95%. Among hydrocarbons with the same C number, it is easier for alkenes to present ReSER process than alkanes. The raw material with more C number is more easily to have ReSER process.