化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
6期
2078-2084
,共7页
刘作华%曾启琴%杨鲜艳%刘仁龙%王运东%陶长元
劉作華%曾啟琴%楊鮮豔%劉仁龍%王運東%陶長元
류작화%증계금%양선염%류인룡%왕운동%도장원
混合%混沌%搅拌槽%刚柔组合桨%数值模拟
混閤%混沌%攪拌槽%剛柔組閤槳%數值模擬
혼합%혼돈%교반조%강유조합장%수치모의
mixing%chaos%stirred vessel%rigid-flexible impeller%numerical simulation
高黏度流体处于层流状态时,普遍存在的混合隔离区,降低了流体的混合效率。减小或消除隔离区,是实现流体高效混合的基本途径。采用实验研究与数值模拟相结合的方法,对刚性六直叶涡轮桨(刚性桨)和刚柔组合六直叶涡轮桨(组合桨)的流场结构进行研究,对比分析了两种桨叶在相同功耗(3 kW·m-3)时的轴向、径向和切向的速度矢量图、速度云图以及速度分布散点图。结果表明,刚性桨的能量集中在桨叶尖端部分,远离桨叶区域的流体速度很小甚至为0 m·s-1;而组合桨可将能量从桨叶尖端扩散至全槽,使槽内流体均具有一定的流速,提高了混合效率,且显色实验与数值模拟结果一致,组合桨体系的混合隔离区在短时间内就可消除,混合良好,而刚性桨体系的混合隔离区始终存在,混合效果不佳。
高黏度流體處于層流狀態時,普遍存在的混閤隔離區,降低瞭流體的混閤效率。減小或消除隔離區,是實現流體高效混閤的基本途徑。採用實驗研究與數值模擬相結閤的方法,對剛性六直葉渦輪槳(剛性槳)和剛柔組閤六直葉渦輪槳(組閤槳)的流場結構進行研究,對比分析瞭兩種槳葉在相同功耗(3 kW·m-3)時的軸嚮、徑嚮和切嚮的速度矢量圖、速度雲圖以及速度分佈散點圖。結果錶明,剛性槳的能量集中在槳葉尖耑部分,遠離槳葉區域的流體速度很小甚至為0 m·s-1;而組閤槳可將能量從槳葉尖耑擴散至全槽,使槽內流體均具有一定的流速,提高瞭混閤效率,且顯色實驗與數值模擬結果一緻,組閤槳體繫的混閤隔離區在短時間內就可消除,混閤良好,而剛性槳體繫的混閤隔離區始終存在,混閤效果不佳。
고점도류체처우층류상태시,보편존재적혼합격리구,강저료류체적혼합효솔。감소혹소제격리구,시실현류체고효혼합적기본도경。채용실험연구여수치모의상결합적방법,대강성륙직협와륜장(강성장)화강유조합륙직협와륜장(조합장)적류장결구진행연구,대비분석료량충장협재상동공모(3 kW·m-3)시적축향、경향화절향적속도시량도、속도운도이급속도분포산점도。결과표명,강성장적능량집중재장협첨단부분,원리장협구역적류체속도흔소심지위0 m·s-1;이조합장가장능량종장협첨단확산지전조,사조내류체균구유일정적류속,제고료혼합효솔,차현색실험여수치모의결과일치,조합장체계적혼합격리구재단시간내취가소제,혼합량호,이강성장체계적혼합격리구시종존재,혼합효과불가。
Isolated mixing region often appears in the high-viscosity fluid with laminar flow in a stirred vessel, reducing fluid mixing efficiency. Diminishing or eliminating isolated mixing region improves the mixing efficiency and reduces mixing energy consumption. Experimental and computational studies were carried out to compare the flow field structures with rigid Rushton turbine impeller (rigid RT impeller) and rigid-flexible Rushton turbine impeller (combination RT impeller). Analyses were carried out on axial, radial and tangential velocity vector plots, velocity contours and velocity distribution scatter plots at the same time power consumption (3 kW·m-3)with these two impellers. Results show that the energy concentrates at the tip of rigid RT impeller and the fluid velocity away from the impeller is small, even at 0 m·s-1, while for combination RT impeller, the energy distributes well in the stirred tank so that the fluid gains certain velocity everywhere. The numerical simulation results agree with experimental results. The combination RT impeller improves mixing efficiency by eliminating isolated mixing regions, while rigid RT impeller presents a poor mixing efficiency since isolated mixing regions always exist.