水资源与水工程学报
水資源與水工程學報
수자원여수공정학보
JOURNAL OF WATER RESOURCES AND WATER ENGINEERING
2014年
5期
137-141
,共5页
梁国华%胡春娟%何斌%张澎辉%许海军%李菡
樑國華%鬍春娟%何斌%張澎輝%許海軍%李菡
량국화%호춘연%하빈%장팽휘%허해군%리함
产沙因素%BP神经网络%沙量预报%闹德海水库
產沙因素%BP神經網絡%沙量預報%鬧德海水庫
산사인소%BP신경망락%사량예보%료덕해수고
sediment yield factor%BP neural network%sediment prediction%Naodehai reservoir
针对水库调度需要,以闹德海水库为背景开展入库沙量预报研究。首先分析水库的入库水沙特性,以确定入库沙量的主要影响因素;进而研究建立基于水文要素的BP神经网络入库沙量预测模型,并利用历史场次洪水资料进行训练学习。结果表明所选择的产沙因子基本能够反映流域降雨-产沙-输沙过程的传递关系,模型可用于入库沙量预报,指导水库实时水沙调度决策。
針對水庫調度需要,以鬧德海水庫為揹景開展入庫沙量預報研究。首先分析水庫的入庫水沙特性,以確定入庫沙量的主要影響因素;進而研究建立基于水文要素的BP神經網絡入庫沙量預測模型,併利用歷史場次洪水資料進行訓練學習。結果錶明所選擇的產沙因子基本能夠反映流域降雨-產沙-輸沙過程的傳遞關繫,模型可用于入庫沙量預報,指導水庫實時水沙調度決策。
침대수고조도수요,이료덕해수고위배경개전입고사량예보연구。수선분석수고적입고수사특성,이학정입고사량적주요영향인소;진이연구건립기우수문요소적BP신경망락입고사량예측모형,병이용역사장차홍수자료진행훈련학습。결과표명소선택적산사인자기본능구반영류역강우-산사-수사과정적전체관계,모형가용우입고사량예보,지도수고실시수사조도결책。
The prediction of reservoir sediment can be conducted by the background of Naodehai reservoir so as to meet the need of reservoir operation.The paper first aanalyzed the characteristics of water and sediment in reservoir so as to determine the main factors which affect the sediment storage volume;it fur-ther researched to establish sediment storage prediction model based on BP neural network of hydrological factors, and used historical flood data to train and learn.The results showed that the chosen sediment fac-tor can basically reflect the transfer relationship of the processe of rainfall -sediment -sediment trans-port in the watershed.The model can be used to forecast sediment storage and guide the decision of real-time regulation of reservoir.