电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
6期
1348-1354
,共7页
李霄剑%王永%陈绍青%付志浩
李霄劍%王永%陳紹青%付誌浩
리소검%왕영%진소청%부지호
自适应滤波%最小均方算法%方向优化%最小均方球%方向优化最小均方算法
自適應濾波%最小均方算法%方嚮優化%最小均方毬%方嚮優化最小均方算法
자괄응려파%최소균방산법%방향우화%최소균방구%방향우화최소균방산법
Adaptive filter%Least Mean Square (LMS) algorithm%Direction optimization%Least Mean Square (LMS) ball%Direction Optimization Least Mean Square (DOLMS) algorithm
最小均方(Least Mean Square, LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新向量,使得算法的更新方向尽可能接近Newton方向。基于此方法,给出一种方向优化LMS(Direction Optimization LMS, DOLMS)算法,并推广到变步长DOLMS算法。理论分析与仿真结果表明,该方法与传统分块LMS算法相比,有更快的收敛速度和更小的计算复杂度。
最小均方(Least Mean Square, LMS)算法的更新方嚮是對最速下降方嚮的估計,其收斂速度也受到最速下降法的約束。為瞭襬脫該約束,該文在對LMS算法分析的基礎上,提齣一種針對LMS算法的分塊方嚮優化方法。該方法通過分析誤差信號來選擇更新嚮量,使得算法的更新方嚮儘可能接近Newton方嚮。基于此方法,給齣一種方嚮優化LMS(Direction Optimization LMS, DOLMS)算法,併推廣到變步長DOLMS算法。理論分析與倣真結果錶明,該方法與傳統分塊LMS算法相比,有更快的收斂速度和更小的計算複雜度。
최소균방(Least Mean Square, LMS)산법적경신방향시대최속하강방향적고계,기수렴속도야수도최속하강법적약속。위료파탈해약속,해문재대LMS산법분석적기출상,제출일충침대LMS산법적분괴방향우화방법。해방법통과분석오차신호래선택경신향량,사득산법적경신방향진가능접근Newton방향。기우차방법,급출일충방향우화LMS(Direction Optimization LMS, DOLMS)산법,병추엄도변보장DOLMS산법。이론분석여방진결과표명,해방법여전통분괴LMS산법상비,유경쾌적수렴속도화경소적계산복잡도。
The update vector of Least Mean Square (LMS) algorithm is an estimation of the gradient vector, thus its convergence rate is limited by the method of steepest descent. Based on the discussion of basic LMS, a direction optimization method of LMS algorithm is proposed in order to get rid of this speed constraint. In the proposed method, the closest update vector to the Newton direction is chosen based on the analysis of the error signal. Based on the method, a Direction Optimization LMS (DOLMS) algorithm is proposed, and it is extended to the variable step-size DOLMS algorithm. The theoretical analysis and the simulation results show that the proposed method has higher speed of convergence and less computational complexity than traditional block LMS algorithm.