计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
17期
43-46,138
,共5页
粒子群优化%逻辑自映射%局部收敛%稳定性%群体智能
粒子群優化%邏輯自映射%跼部收斂%穩定性%群體智能
입자군우화%라집자영사%국부수렴%은정성%군체지능
Particle Swarm Optimization(PSO)%logical self-map%local convergence%stability%swarm intelligence
针对粒子群优化算法稳定性较差和易陷入局部极值的缺点,提出了一种新颖的混沌粒子群优化算法。一方面,在可行域中应用逻辑自映射函数初始化生成均匀分布的粒群,提高了初始解的质量和增加了算法的稳定性;另一方面,采用两组速度-位移更新策略,即对全局最优粒子单独使用特定的速度-位移策略更新,而对其余粒子则使用常规的速度-位移进行更新,从而有效避免了算法陷入局部收敛的缺点。将该算法应用在4个基准测试函数优化中,仿真结果表明其能有效提高全局寻优的性能,且稳定性好。
針對粒子群優化算法穩定性較差和易陷入跼部極值的缺點,提齣瞭一種新穎的混沌粒子群優化算法。一方麵,在可行域中應用邏輯自映射函數初始化生成均勻分佈的粒群,提高瞭初始解的質量和增加瞭算法的穩定性;另一方麵,採用兩組速度-位移更新策略,即對全跼最優粒子單獨使用特定的速度-位移策略更新,而對其餘粒子則使用常規的速度-位移進行更新,從而有效避免瞭算法陷入跼部收斂的缺點。將該算法應用在4箇基準測試函數優化中,倣真結果錶明其能有效提高全跼尋優的性能,且穩定性好。
침대입자군우화산법은정성교차화역함입국부겁치적결점,제출료일충신영적혼돈입자군우화산법。일방면,재가행역중응용라집자영사함수초시화생성균균분포적립군,제고료초시해적질량화증가료산법적은정성;령일방면,채용량조속도-위이경신책략,즉대전국최우입자단독사용특정적속도-위이책략경신,이대기여입자칙사용상규적속도-위이진행경신,종이유효피면료산법함입국부수렴적결점。장해산법응용재4개기준측시함수우화중,방진결과표명기능유효제고전국심우적성능,차은정성호。
Particle Swarm Optimization(PSO)is a stochastic global optimization evolutionary algorithm. In this paper, a novel Chaos Particle Swarm Optimization algorithm(CPSO)is proposed in order to overcome the poor stability and the disadvantage of easily getting into the local optimum of the Standard Particle Swarm Optimization(SPSO). On the one hand, the uniform par-ticles are produced by logical self-map function so as to improve the quality of the initial solutions and enhance the stability. On the other hand, two sets of velocity and position strategies are employed, that is to say, the special velocity-position is used for the global particles, while the general velocity-position is used for the rest particles in the swarm so as to prevent the particles from plunging into the local optimum. The CPSO proposed in this paper is applied to four benchmark functions and the experi-mental results show that CPSO can improve the performance of searching global optimum efficiently and own higher stability.