计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
17期
186-189
,共4页
人脸识别%小波变换%仿生模式识别
人臉識彆%小波變換%倣生模式識彆
인검식별%소파변환%방생모식식별
face recognition%wavelet transform%biomimetic pattern recognition
针对人脸图像易受光线和表情影响的特点,提出了一种基于二进小波变换和仿生模式识别的人脸识别方法。应用样条二进小波对人脸图像进行处理,对得到的细节子图进行融合。在FFT和PCA处理与降维后,用仿生模式识别进行学习和识别。实验结果表明,该方法比传统方法具有更高的识别率。
針對人臉圖像易受光線和錶情影響的特點,提齣瞭一種基于二進小波變換和倣生模式識彆的人臉識彆方法。應用樣條二進小波對人臉圖像進行處理,對得到的細節子圖進行融閤。在FFT和PCA處理與降維後,用倣生模式識彆進行學習和識彆。實驗結果錶明,該方法比傳統方法具有更高的識彆率。
침대인검도상역수광선화표정영향적특점,제출료일충기우이진소파변환화방생모식식별적인검식별방법。응용양조이진소파대인검도상진행처리,대득도적세절자도진행융합。재FFT화PCA처리여강유후,용방생모식식별진행학습화식별。실험결과표명,해방법비전통방법구유경고적식별솔。
Aiming at robustness of face recognition under the condition of illumination perturbations and facial variety, a face recognition method based on dyadic wavelet transform and biomimetic pattern recognition is proposed in this paper. The spline dyadic wavelet is applied to face images. The detail subbands are merged by concatenation. The facial images are treated and reduced dimension respectively by FFT(Fast Fourier Transform)and PCA(Principal Component Analysis). The feature vectors are learned and recognized by biomimetic pattern recognition. The experimental results prove that the correct recognition rate of the method in this paper is higher than traditional recognition method.