自动化与信息工程
自動化與信息工程
자동화여신식공정
AUTOMATION & INFORMATION ENGINEERING
2013年
4期
1-5,21
,共6页
区间数%区间Ⅱ型模糊集合%模糊c均值聚类%不确定数据
區間數%區間Ⅱ型模糊集閤%模糊c均值聚類%不確定數據
구간수%구간Ⅱ형모호집합%모호c균치취류%불학정수거
Interval Data%Type-2 Fuzzy Sets%Fuzzy c-Means%Interval-Valued Data%Uncertainty Data
针对区间数模糊c均值聚类算法存在模糊度指数m无法准确描述数据簇划分情况的问题,对点数据集合的区间Ⅱ型模糊c均值聚类算法进行拓展,将其扩展到区间型不确定数据的聚类中。同时,分析了区间数的区间Ⅱ型模糊c均值聚类算法的收敛性,以确定模糊度指数m1和m2的取值原则。基于合成数据和实测数据的仿真实验结果表明:区间数的区间Ⅱ型模糊c均值聚类算法比区间数的模糊c均值聚类算法的聚类效果好。
針對區間數模糊c均值聚類算法存在模糊度指數m無法準確描述數據簇劃分情況的問題,對點數據集閤的區間Ⅱ型模糊c均值聚類算法進行拓展,將其擴展到區間型不確定數據的聚類中。同時,分析瞭區間數的區間Ⅱ型模糊c均值聚類算法的收斂性,以確定模糊度指數m1和m2的取值原則。基于閤成數據和實測數據的倣真實驗結果錶明:區間數的區間Ⅱ型模糊c均值聚類算法比區間數的模糊c均值聚類算法的聚類效果好。
침대구간수모호c균치취류산법존재모호도지수m무법준학묘술수거족화분정황적문제,대점수거집합적구간Ⅱ형모호c균치취류산법진행탁전,장기확전도구간형불학정수거적취류중。동시,분석료구간수적구간Ⅱ형모호c균치취류산법적수렴성,이학정모호도지수m1화m2적취치원칙。기우합성수거화실측수거적방진실험결과표명:구간수적구간Ⅱ형모호c균치취류산법비구간수적모호c균치취류산법적취류효과호。
In the fuzzy c-means clustering method for interval-valued data, the fuzzifier is responsible for clustering performance. However, it is impossible to accurately confirm the fuzzifier with a single value because of the uncertainty dispersion of the dataset. In this paper, we extend the IT2 FCM clustering method for point data to that for interval data, and exploit the differences between these two clustering methods by comparing their iterative processes. The iteration process of the KM algorithm is discussed and the selection rules for fuzzifiers for IT2 IFCM clustering method is provided in this paper. The validity of the proposed clustering method is investigated and compared to the IFCM clustering methods for synthetic and real interval-valued datasets. Computational results verify the validity of the proposed method.