微型机与应用
微型機與應用
미형궤여응용
MICROCOMPUTER & ITS APPLICATIONS
2013年
23期
74-76,79
,共4页
聚类%权值合理性%自适应免疫算法%连通分量
聚類%權值閤理性%自適應免疫算法%連通分量
취류%권치합이성%자괄응면역산법%련통분량
clustering%weights rationality%adaptive immune algorithm%connected component
在数据采集过程中结合网格聚类算法提高计算效率,为了保存采样数据的分布特点引入权值。根据类别中心密度高、权值大的特征采用寻找连通分量的方法初步确定聚类中心,在此基础上结合自适应免疫算法,动态地确定聚类中心及其类别数。进而使 FCM 算法跳出局部最优,最大可能地得到全局最优解。
在數據採集過程中結閤網格聚類算法提高計算效率,為瞭保存採樣數據的分佈特點引入權值。根據類彆中心密度高、權值大的特徵採用尋找連通分量的方法初步確定聚類中心,在此基礎上結閤自適應免疫算法,動態地確定聚類中心及其類彆數。進而使 FCM 算法跳齣跼部最優,最大可能地得到全跼最優解。
재수거채집과정중결합망격취류산법제고계산효솔,위료보존채양수거적분포특점인입권치。근거유별중심밀도고、권치대적특정채용심조련통분량적방법초보학정취류중심,재차기출상결합자괄응면역산법,동태지학정취류중심급기유별수。진이사 FCM 산법도출국부최우,최대가능지득도전국최우해。
The grid clustering algorithm is combined to improve the computational efficiency in the data collection process , and the right values are introduced to preserve the distribution characteristics of the sampled data. Depending on the characters of large weight and density in the category center, methods of finding connected components are adopted to initially identify cluster centers. On this basis, the adaptive immune algorithm is combined to dynamically determine the cluster centers and the number of categories. Thereby the FCM algorithm is able to escape from local optima, and the maximum possible to get a global optimal solution.