微型机与应用
微型機與應用
미형궤여응용
MICROCOMPUTER & ITS APPLICATIONS
2013年
23期
29-33
,共5页
王晓明%熊九龙%王志虎%祝夏雨%张玘
王曉明%熊九龍%王誌虎%祝夏雨%張玘
왕효명%웅구룡%왕지호%축하우%장기
视觉注意机制%合并策略%主动轮廓%区域生长
視覺註意機製%閤併策略%主動輪廓%區域生長
시각주의궤제%합병책략%주동륜곽%구역생장
image segmentation%combination strategy%visual attention mechanism%active contour%region growing
针对传统图像分割算法需要参数设置等缺点,提出了一种自动的图像分割算法,采用基于改进视觉注意机制的粗分割和结合主动轮廓与区域生长的精确分割两个过程对图像进行自动分割。实验结果表明,该方法的分割性能优于自适应阈值算法和Kmeans聚类算法,且具有较强的鲁棒性。
針對傳統圖像分割算法需要參數設置等缺點,提齣瞭一種自動的圖像分割算法,採用基于改進視覺註意機製的粗分割和結閤主動輪廓與區域生長的精確分割兩箇過程對圖像進行自動分割。實驗結果錶明,該方法的分割性能優于自適應閾值算法和Kmeans聚類算法,且具有較彊的魯棒性。
침대전통도상분할산법수요삼수설치등결점,제출료일충자동적도상분할산법,채용기우개진시각주의궤제적조분할화결합주동륜곽여구역생장적정학분할량개과정대도상진행자동분할。실험결과표명,해방법적분할성능우우자괄응역치산법화Kmeans취류산법,차구유교강적로봉성。
In view of the deficiency that traditional image segmentation algorithm needs to set parameters , an automatic image segmentation is proposed in this paper. It applies two process of coarse segmentation based on improved visual attention mechanism and precise segmentation combined active contour with region growing to achieve automatic image segmentation. Experiments show that the proposed algorithm outperforms adaptive threshold algorithm and Kmeans clustering algorithm in image segmentation. The robustness of the proposed algorithm is strong.