现代计算机(专业版)
現代計算機(專業版)
현대계산궤(전업판)
MODERN COMPUTER
2013年
23期
30-33
,共4页
人脸识别%Curvelet%LPP%支持向量机
人臉識彆%Curvelet%LPP%支持嚮量機
인검식별%Curvelet%LPP%지지향량궤
Face Recognition%Curvelet%LPP(Local Preserving Projection)%Support Vector Machine
基于人脸图像的曲线奇异性及高维图像数据带来的计算复杂性,提出一种结合Curvelet变换与LPP的人脸识别方法。首先通过Curvelet变换对人脸图像降维,利用LPP将图像投影到最优子空间中,利用支持向量机进行分类识别,实验结果表明该算法的识别效果优于小波变换结合LPP方法、LPP方法。
基于人臉圖像的麯線奇異性及高維圖像數據帶來的計算複雜性,提齣一種結閤Curvelet變換與LPP的人臉識彆方法。首先通過Curvelet變換對人臉圖像降維,利用LPP將圖像投影到最優子空間中,利用支持嚮量機進行分類識彆,實驗結果錶明該算法的識彆效果優于小波變換結閤LPP方法、LPP方法。
기우인검도상적곡선기이성급고유도상수거대래적계산복잡성,제출일충결합Curvelet변환여LPP적인검식별방법。수선통과Curvelet변환대인검도상강유,이용LPP장도상투영도최우자공간중,이용지지향량궤진행분류식별,실험결과표명해산법적식별효과우우소파변환결합LPP방법、LPP방법。
Based on curves singularity of face image and the computational complexity caused by high-dimensional image data, proposes a new face recognition algorithm based on Curvelet transform and LPP. Applies curvelet transform dimensionality reduction for face image, uses LPP to project the image to the optimal subspace, applies support vector machine (SVM) for classification. Experimental results on ORL and Yale indicate that the performance of proposed method is superior to other methods, such as Wavelet transform combined with LPP and LPP method.