东南大学学报(自然科学版)
東南大學學報(自然科學版)
동남대학학보(자연과학판)
JOURNAL OF SOUTHEAST UNIVERSITY
2013年
z2期
410-413
,共4页
张小琴%赵池航%沙月进%党倩%张运胜
張小琴%趙池航%沙月進%黨倩%張運勝
장소금%조지항%사월진%당천%장운성
车辆品牌%HOG特征%支持向量机%核函数
車輛品牌%HOG特徵%支持嚮量機%覈函數
차량품패%HOG특정%지지향량궤%핵함수
vehicle brand%HOG feature%SVM( support vector machine)%kernel function
为了解决套牌车与违章车的身份确认问题,提出了一种车辆品牌识别方法.该方法首先基于对称特征检测车辆前脸区域,然后提取车辆前脸区域的HOG特征,最后采用支持向量机对车辆品牌进行分类.实验根据苏州市公安局提供的道路卡口图片,构建了车脸数据库,该数据库包括奥迪、长安、日产等15种车辆品牌,共3000张图片.基于构建的车脸数据库,采用所提出的车辆品牌识别方法进行了实验,并对比分析了支持向量机( support vector machine, SVM)线性核函数、多项式核函数和径向基核函数的性能,3种核函数的整体分类精度分别为89.27%,89.74%和89.89%.理论分析和实验结果表明,所提出的基于HOG特征及支持向量机的车辆品牌识别方法是可行的,并且基于径向基核函数的SVM分类器的性能最优.
為瞭解決套牌車與違章車的身份確認問題,提齣瞭一種車輛品牌識彆方法.該方法首先基于對稱特徵檢測車輛前臉區域,然後提取車輛前臉區域的HOG特徵,最後採用支持嚮量機對車輛品牌進行分類.實驗根據囌州市公安跼提供的道路卡口圖片,構建瞭車臉數據庫,該數據庫包括奧迪、長安、日產等15種車輛品牌,共3000張圖片.基于構建的車臉數據庫,採用所提齣的車輛品牌識彆方法進行瞭實驗,併對比分析瞭支持嚮量機( support vector machine, SVM)線性覈函數、多項式覈函數和徑嚮基覈函數的性能,3種覈函數的整體分類精度分彆為89.27%,89.74%和89.89%.理論分析和實驗結果錶明,所提齣的基于HOG特徵及支持嚮量機的車輛品牌識彆方法是可行的,併且基于徑嚮基覈函數的SVM分類器的性能最優.
위료해결투패차여위장차적신빈학인문제,제출료일충차량품패식별방법.해방법수선기우대칭특정검측차량전검구역,연후제취차량전검구역적HOG특정,최후채용지지향량궤대차량품패진행분류.실험근거소주시공안국제공적도로잡구도편,구건료차검수거고,해수거고포괄오적、장안、일산등15충차량품패,공3000장도편.기우구건적차검수거고,채용소제출적차량품패식별방법진행료실험,병대비분석료지지향량궤( support vector machine, SVM)선성핵함수、다항식핵함수화경향기핵함수적성능,3충핵함수적정체분류정도분별위89.27%,89.74%화89.89%.이론분석화실험결과표명,소제출적기우HOG특정급지지향량궤적차량품패식별방법시가행적,병차기우경향기핵함수적SVM분류기적성능최우.
In order to solve the problem of fake-licensed car and illegal car identification, a vehicle brand recognition method is proposed.It detects the car front face based on symmetric feature, ex-tracts the HOG ( histogar of driented gradient) feature of the car face and then uses support vector machine ( SVM) to classify the vehicle brand.According to the road bayonet pictures provided by the Suzhou Municipal Public Security Bureau, a car face database is built, which includes 3000 pic-tures of 15 kinds of vehicle brands such as Audi, Changan and Nissan.Based on the built database, experiments are conducted using the proposed method for vehicle brand recognition.The perform-ance of three kinds of kernel functions ( linear kernel function, polynomial kernel function and radial basis kernel function) of SVM is compared and analyzed.The overall classification accuracy of the three kernel functions are 89.27% , 89.74% and 89.89%.Theoretical analysis and experimental results show that the proposed recognition method based on HOG features and SVM is feasible, and the SVM classifier based on the radial basis function performs optimal.