东南大学学报(自然科学版)
東南大學學報(自然科學版)
동남대학학보(자연과학판)
JOURNAL OF SOUTHEAST UNIVERSITY
2013年
z2期
355-359
,共5页
李剑锋%吴林弟%胡伍生%王永前%朱明晨
李劍鋒%吳林弟%鬍伍生%王永前%硃明晨
리검봉%오림제%호오생%왕영전%주명신
BP神经网络%对流层湿延迟%精度分析
BP神經網絡%對流層濕延遲%精度分析
BP신경망락%대류층습연지%정도분석
back propagation neural network model%tropospheric wet delay%accuracy analysis
为了提高对流层湿延迟的计算精度和全球定位系统水汽反演的准确性,结合BP神经网络算法的自主学习、记忆、计算和智能处理功能,利用气象探空数据建立了计算对流层湿延迟的BP神经网路模型,其模型结构为4×15×1.分别利用霍普菲尔德模型、多元线性回归模型及BP神经网络模型计算对流层湿延迟.对比分析了3种模型的对流层湿延迟计算结果,得到结论:霍普菲尔德模型存在系统误差,精度较低;多元线性回归模型和BP神经网络模型的精度都优于霍普菲尔德模型;BP神经网络模型精度较霍普菲尔德模型改进约50%,较多元线性回归模型学习中误差改进约71.7%,检验中误差改进约2%.
為瞭提高對流層濕延遲的計算精度和全毬定位繫統水汽反縯的準確性,結閤BP神經網絡算法的自主學習、記憶、計算和智能處理功能,利用氣象探空數據建立瞭計算對流層濕延遲的BP神經網路模型,其模型結構為4×15×1.分彆利用霍普菲爾德模型、多元線性迴歸模型及BP神經網絡模型計算對流層濕延遲.對比分析瞭3種模型的對流層濕延遲計算結果,得到結論:霍普菲爾德模型存在繫統誤差,精度較低;多元線性迴歸模型和BP神經網絡模型的精度都優于霍普菲爾德模型;BP神經網絡模型精度較霍普菲爾德模型改進約50%,較多元線性迴歸模型學習中誤差改進約71.7%,檢驗中誤差改進約2%.
위료제고대류층습연지적계산정도화전구정위계통수기반연적준학성,결합BP신경망락산법적자주학습、기억、계산화지능처리공능,이용기상탐공수거건립료계산대류층습연지적BP신경망로모형,기모형결구위4×15×1.분별이용곽보비이덕모형、다원선성회귀모형급BP신경망락모형계산대류층습연지.대비분석료3충모형적대류층습연지계산결과,득도결론:곽보비이덕모형존재계통오차,정도교저;다원선성회귀모형화BP신경망락모형적정도도우우곽보비이덕모형;BP신경망락모형정도교곽보비이덕모형개진약50%,교다원선성회귀모형학습중오차개진약71.7%,검험중오차개진약2%.
In order to improve the calculation accuracy of the tropospheric wet delay and the preci-sion of the global positioning system water vapor inversion, a back propagation ( BP) neural network model with the structure of 4 ×15 ×1 is introduced to calculate the tropospheric wet delay.The mod-el establishment involves the combination of the functions such as self-learning, memory, calculation and intelligent processing of the BP neural network algorithm as well as the usage of radiosonde da-ta.Three models are taken to calculate the tropospheric wet delay, which are the Hopfield model, the multiple linear regression model and the BP neural network model, respectively.Analysis results show that the Hopfield model is relatively low in precision because of its systematic error, whereas the other two are superior in this respect.The accuracy of the BP neural network model is improved about 50%compared to the Hopfield model, while both the learning error and inspection error are increased by 71.7%and 2%, respectively, compared to the multiple linear regression model.