东南大学学报(自然科学版)
東南大學學報(自然科學版)
동남대학학보(자연과학판)
JOURNAL OF SOUTHEAST UNIVERSITY
2013年
z2期
279-282
,共4页
宁伟%周立%宁亚飞%杨保
寧偉%週立%寧亞飛%楊保
저위%주립%저아비%양보
隧道监控%围岩变形预测%灰色理论%卡尔曼滤波算法
隧道鑑控%圍巖變形預測%灰色理論%卡爾曼濾波算法
수도감공%위암변형예측%회색이론%잡이만려파산법
tunnel monitoring%surrounding rock deformation prediction%gray theory%Kalman filter algorithm
为提高隧道围岩变形监测的预测精度,结合具体工程实践研究了影响隧道形变的具体因素。首先,在预测模型自变量选取时,利用灰色理论提出了将隧道掌子面开挖和二衬支护参数同时间变量一起参与到预测模型的计算思路;其次,由于传统测量方法受观测设备和内部施工的影响,导致预测模型中自变量难以准确估计,且随时间累积,自变量数目增多而使计算量也逐渐增大,为克服此类问题,在突出隧道内部施工对自身变形具有重要影响的基础上,将观测量作为已知量而非待求量,采用递推式平差方法和卡尔曼滤波算法来估计方程系数,把观测量作为自变量预测未来变化量。计算结果表明,该算法在预测精度和计算效率方面有明显优势。
為提高隧道圍巖變形鑑測的預測精度,結閤具體工程實踐研究瞭影響隧道形變的具體因素。首先,在預測模型自變量選取時,利用灰色理論提齣瞭將隧道掌子麵開挖和二襯支護參數同時間變量一起參與到預測模型的計算思路;其次,由于傳統測量方法受觀測設備和內部施工的影響,導緻預測模型中自變量難以準確估計,且隨時間纍積,自變量數目增多而使計算量也逐漸增大,為剋服此類問題,在突齣隧道內部施工對自身變形具有重要影響的基礎上,將觀測量作為已知量而非待求量,採用遞推式平差方法和卡爾曼濾波算法來估計方程繫數,把觀測量作為自變量預測未來變化量。計算結果錶明,該算法在預測精度和計算效率方麵有明顯優勢。
위제고수도위암변형감측적예측정도,결합구체공정실천연구료영향수도형변적구체인소。수선,재예측모형자변량선취시,이용회색이론제출료장수도장자면개알화이츤지호삼수동시간변량일기삼여도예측모형적계산사로;기차,유우전통측량방법수관측설비화내부시공적영향,도치예측모형중자변량난이준학고계,차수시간루적,자변량수목증다이사계산량야축점증대,위극복차류문제,재돌출수도내부시공대자신변형구유중요영향적기출상,장관측량작위이지량이비대구량,채용체추식평차방법화잡이만려파산법래고계방정계수,파관측량작위자변량예측미래변화량。계산결과표명,해산법재예측정도화계산효솔방면유명현우세。
In order to improve the prediction accuracy of surrounding rock deformation in tunnel mo-nitoring, the specific factors affecting tunnel deformation are studied combined with specific engi-neering practice.First, when selecting variables in the prediction model, the calculation thought that the excavation of the tunnel face and the second lining support parameters are together used with time variable in predictive models is proposed by the gray theory.Secondly, because of the traditional measurement method influenced by observation equipment and internal construction, the prediction model is difficult to accurately estimate independent variables, and accumulated with time, the com-putation increases with the increase in variables.To overcome this problem, based on the important influence of deformation by the internal construction, the measurements are regarded as known quan-tity rather than the unknown quantity to estimate the coefficients of the equation by the recursive ad-justment method and the Kalman filter algorithm, and the measured values are regarded as independ-ent variables to predict future changes.Results show that the algorithm has obvious advantages than the traditional algorithm in prediction accuracy and computational efficiency.