大连理工大学学报
大連理工大學學報
대련리공대학학보
JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY
2014年
1期
124-130
,共7页
极限学习机%膜算法%氧气转炉炼钢%终点预报%软测量
極限學習機%膜算法%氧氣轉爐煉鋼%終點預報%軟測量
겁한학습궤%막산법%양기전로련강%종점예보%연측량
extreme learning machine%membrane algorithm%basic oxygen furnace steelmaking%endpoint prediction%soft measurement
氧气转炉炼钢的控制目标是终点温度和碳含量,但由于不能对其进行在线连续测量,直接影响了出钢的质量。针对该问题,提出一种基于膜算法进化极限学习机(ELM )的抗干扰终点预报模型。利用进化膜算法的全局寻优能力调整ELM网络参数,不仅避免了ELM 网络受异常点影响出现过拟合现象,还可以寻找最优复杂度的EL M模型。将找到的EL M 模型应用到转炉炼钢领域并建立终点碳含量和温度的预报模型。在仿真实验中,分别使用含有高斯噪声的标准sin C函数和氧气转炉炼钢实际生产数据进行仿真,结果表明所提模型在含噪声的数据中具有较好的预报精度和鲁棒性。
氧氣轉爐煉鋼的控製目標是終點溫度和碳含量,但由于不能對其進行在線連續測量,直接影響瞭齣鋼的質量。針對該問題,提齣一種基于膜算法進化極限學習機(ELM )的抗榦擾終點預報模型。利用進化膜算法的全跼尋優能力調整ELM網絡參數,不僅避免瞭ELM 網絡受異常點影響齣現過擬閤現象,還可以尋找最優複雜度的EL M模型。將找到的EL M 模型應用到轉爐煉鋼領域併建立終點碳含量和溫度的預報模型。在倣真實驗中,分彆使用含有高斯譟聲的標準sin C函數和氧氣轉爐煉鋼實際生產數據進行倣真,結果錶明所提模型在含譟聲的數據中具有較好的預報精度和魯棒性。
양기전로련강적공제목표시종점온도화탄함량,단유우불능대기진행재선련속측량,직접영향료출강적질량。침대해문제,제출일충기우막산법진화겁한학습궤(ELM )적항간우종점예보모형。이용진화막산법적전국심우능력조정ELM망락삼수,불부피면료ELM 망락수이상점영향출현과의합현상,환가이심조최우복잡도적EL M모형。장조도적EL M 모형응용도전로련강영역병건립종점탄함량화온도적예보모형。재방진실험중,분별사용함유고사조성적표준sin C함수화양기전로련강실제생산수거진행방진,결과표명소제모형재함조성적수거중구유교호적예보정도화로봉성。
The goal of basic oxygen furnace (BOF) steelmaking is the endpoint of the temperature and carbon content .But it does not work to online continuous measurement ,which directly affects the quality of steel .For solving the above problem ,an anti-jamming endpoint prediction model of extreme learning machine (ELM ) based on evolving membrane algorithm is proposed .The parameters of ELM are adjusted by the global optimization ability of evolving membrane algorithm ,w hich not only avoids the overfitting of ELM affected by outliers ,but also finds the optimal ELM model .The ELM model is applied to the field of BOF steelmaking ,and the endpoint prediction model of carbon content and temperature is created .Simulations are implemented by the sin C function with the Gaussian noise and the production data of BOF steelmaking .The experimental results indicate that the proposed model has good prediction accuracy and robustness in the processing of data with noise .