湖北农业科学
湖北農業科學
호북농업과학
2014年
8期
1774-1778,1785
,共6页
鸡粪%生物炭%除磷%吸附动力学%吸附等温线
鷄糞%生物炭%除燐%吸附動力學%吸附等溫線
계분%생물탄%제린%흡부동역학%흡부등온선
chicken manure%bio-carbon%phosphate removal%kinetics of adsorption%adsorption isotherm
采用鸡粪热解制备生物炭作为吸附剂,研究了不同热解温度(500、600、700和750℃)制备的生物炭吸附磷的动力学和等温线。结果表明,这4种生物炭对磷的吸附能够较好地用准二级动力学模型来描述,并且随着热解温度的升高,平衡吸附量和吸附速率也随之增加。分别用Langmuir等温方程和Fre-undlich等温方程对试验数据进行拟合,等温吸附过程能较好地用Freundlich吸附等温线描述,表明磷在鸡粪生物炭表面的吸附受多种机制影响。4种生物炭对磷的吸附活化能分别为7.67、12.48、11.02、8.80 kJ/mol,说明吸附过程明显带有物理吸附性质。同时对生物炭吸附去除磷的机理做了初步探讨,即水中的磷可以通过非均质吸附到鸡粪生物炭表面的胶体和纳米MgO晶体上而得到去除。
採用鷄糞熱解製備生物炭作為吸附劑,研究瞭不同熱解溫度(500、600、700和750℃)製備的生物炭吸附燐的動力學和等溫線。結果錶明,這4種生物炭對燐的吸附能夠較好地用準二級動力學模型來描述,併且隨著熱解溫度的升高,平衡吸附量和吸附速率也隨之增加。分彆用Langmuir等溫方程和Fre-undlich等溫方程對試驗數據進行擬閤,等溫吸附過程能較好地用Freundlich吸附等溫線描述,錶明燐在鷄糞生物炭錶麵的吸附受多種機製影響。4種生物炭對燐的吸附活化能分彆為7.67、12.48、11.02、8.80 kJ/mol,說明吸附過程明顯帶有物理吸附性質。同時對生物炭吸附去除燐的機理做瞭初步探討,即水中的燐可以通過非均質吸附到鷄糞生物炭錶麵的膠體和納米MgO晶體上而得到去除。
채용계분열해제비생물탄작위흡부제,연구료불동열해온도(500、600、700화750℃)제비적생물탄흡부린적동역학화등온선。결과표명,저4충생물탄대린적흡부능구교호지용준이급동역학모형래묘술,병차수착열해온도적승고,평형흡부량화흡부속솔야수지증가。분별용Langmuir등온방정화Fre-undlich등온방정대시험수거진행의합,등온흡부과정능교호지용Freundlich흡부등온선묘술,표명린재계분생물탄표면적흡부수다충궤제영향。4충생물탄대린적흡부활화능분별위7.67、12.48、11.02、8.80 kJ/mol,설명흡부과정명현대유물리흡부성질。동시대생물탄흡부거제린적궤리주료초보탐토,즉수중적린가이통과비균질흡부도계분생물탄표면적효체화납미MgO정체상이득도거제。
Using bio-carbon prepared from pyrolysis of chicken manure as materials, the adsorption kinetics and isotherm of phosphate by bio-carbon at different temperatures (500,600,700 and 750℃) were studied. The results showed that the ad-sorption of phosphate followed the pseudo second-order kinetics model. The equilibrium of adsorption capacity and adsorption rate were increased with the increase of pyrolysis temperature. Langmuir and Freundlich models were used to fit experimental data. The Freundlich model could describe the adsorption isotherm better, suggesting that multiple processes controlled the sorption of phosphate by bio-carbon. The adsorption activation energy of bio-carbon at different temperatures were 7.67, 12.48, 11.02, 8.80 kJ∕mol, indicating that it belonged to physics adsorption. The preliminary adsorption mechanism of phos-phate removed by the bio-carbon was studied through heterogeneously processed adsorption onto the colloidal and nano-sized MgO particles on bio-carbon surface.