齐齐哈尔大学学报(自然科学版)
齊齊哈爾大學學報(自然科學版)
제제합이대학학보(자연과학판)
JOURNAL OF QIQIHAR UNIVERSITY(NATURAL SCIENCE EDITION)
2014年
3期
5-10
,共6页
孟凡华%郭祥峰%贾丽华%张宇%杨瑞%郎咸坤
孟凡華%郭祥峰%賈麗華%張宇%楊瑞%郎鹹坤
맹범화%곽상봉%가려화%장우%양서%랑함곤
1,8-萘酰亚胺%密度泛函理论%取代基%电子吸收光谱
1,8-萘酰亞胺%密度汎函理論%取代基%電子吸收光譜
1,8-내선아알%밀도범함이론%취대기%전자흡수광보
N-Phenyl-1,8-naphthalimide%density functional theory%substituent%absorption spectrum
采用密度泛函理论(DFT),在B3LYP/6-31+G(d)水平上对N-苯基-1,8-萘酰亚胺及其18种衍生物的几何结构进行全优化。在基态优化构型基础上,用含时密度泛函理论(TD-DFT)方法计算了该类物质在甲醇溶剂中的紫外可见吸收光谱。分析了分子几何构型、前线分子轨道的电子分布和轨道能级等特征,讨论了结构和吸收光谱之间的关系。结果表明,N-苯基-1,8-萘酰亚胺及其衍生物的稳定构型为非平面结构;其最强吸收光谱主要来源于HOMO→LUMO的π→π*跃迁。此外,在苯环上引入强推电子基团,能够显著降低HOMO与LUMO之间的能级差。
採用密度汎函理論(DFT),在B3LYP/6-31+G(d)水平上對N-苯基-1,8-萘酰亞胺及其18種衍生物的幾何結構進行全優化。在基態優化構型基礎上,用含時密度汎函理論(TD-DFT)方法計算瞭該類物質在甲醇溶劑中的紫外可見吸收光譜。分析瞭分子幾何構型、前線分子軌道的電子分佈和軌道能級等特徵,討論瞭結構和吸收光譜之間的關繫。結果錶明,N-苯基-1,8-萘酰亞胺及其衍生物的穩定構型為非平麵結構;其最彊吸收光譜主要來源于HOMO→LUMO的π→π*躍遷。此外,在苯環上引入彊推電子基糰,能夠顯著降低HOMO與LUMO之間的能級差。
채용밀도범함이론(DFT),재B3LYP/6-31+G(d)수평상대N-분기-1,8-내선아알급기18충연생물적궤하결구진행전우화。재기태우화구형기출상,용함시밀도범함이론(TD-DFT)방법계산료해류물질재갑순용제중적자외가견흡수광보。분석료분자궤하구형、전선분자궤도적전자분포화궤도능급등특정,토론료결구화흡수광보지간적관계。결과표명,N-분기-1,8-내선아알급기연생물적은정구형위비평면결구;기최강흡수광보주요래원우HOMO→LUMO적π→π*약천。차외,재분배상인입강추전자기단,능구현저강저HOMO여LUMO지간적능급차。
Ground state geometries of a series of N-phenyl-1,8-naphthalimide derivatives were calculated by density functional theory(DFT)at the B3LYP/6-31+G(d)levels. On the basis of the ground state optimization, their UV-Vis absorption spectra in CH 3 OH environments were calculated by the time dependent-DFT(TDDFT)method. The molecular structures, electronic division of frontier molecular orbital(MO)and energy levels of MOs were analyzed. The relationships between the structure and absorption spectrum and the effect of substituents as well as differing positions of the phenyl group on electronic spectra have been discussed. It turns out that the B3LYP functional with the 6-31+G(d)basis set provide reliableλmax when the solvent are included in the model. Moreover,our calculation results reveal that for all the derivatives ( electron-withdrawing groups or electron-donating groups ) has little impact on the absorption spectra. The calculation reveals that the maximum absorption band mainly results from theπ→π*transition from HOMO to LUMO. Theory is consistent with the experimental results.