岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
1期
211-216,225
,共7页
埋置深度%山岭隧道%地震响应
埋置深度%山嶺隧道%地震響應
매치심도%산령수도%지진향응
tunnel depth%mountain tunnel%seismic response
根据大量震害资料的调查分析发现,地下结构埋置深度对其地震破坏程度影响很大。通过有限元方法计算8种不同埋置深度条件下的山岭隧道地震响应,并对计算模型的地震输入方法进行了验证,证明地震波输入处理方式的合理性。讨论埋深对结构动力响应的影响,提取衬砌关键节点的竖直向和水平向加速度、位移峰值,分析随着埋深的增大,加速度和位移峰值的变化情况,并以拱顶为例,计算每个埋深变化段的加速度和位移峰值变化率,得到了一定的规律性,如埋置深度从5m增大到50 m,衬砌结构动力响应峰值大小下降较快。此外,还分析了埋深增大对衬砌结构内力峰值的影响。最后,提出在高烈度地震区修建隧道时其埋置深度尽可能不小于50 m,这为相关工程的修建提供了参考依据。
根據大量震害資料的調查分析髮現,地下結構埋置深度對其地震破壞程度影響很大。通過有限元方法計算8種不同埋置深度條件下的山嶺隧道地震響應,併對計算模型的地震輸入方法進行瞭驗證,證明地震波輸入處理方式的閤理性。討論埋深對結構動力響應的影響,提取襯砌關鍵節點的豎直嚮和水平嚮加速度、位移峰值,分析隨著埋深的增大,加速度和位移峰值的變化情況,併以拱頂為例,計算每箇埋深變化段的加速度和位移峰值變化率,得到瞭一定的規律性,如埋置深度從5m增大到50 m,襯砌結構動力響應峰值大小下降較快。此外,還分析瞭埋深增大對襯砌結構內力峰值的影響。最後,提齣在高烈度地震區脩建隧道時其埋置深度儘可能不小于50 m,這為相關工程的脩建提供瞭參攷依據。
근거대량진해자료적조사분석발현,지하결구매치심도대기지진파배정도영향흔대。통과유한원방법계산8충불동매치심도조건하적산령수도지진향응,병대계산모형적지진수입방법진행료험증,증명지진파수입처리방식적합이성。토론매심대결구동력향응적영향,제취츤체관건절점적수직향화수평향가속도、위이봉치,분석수착매심적증대,가속도화위이봉치적변화정황,병이공정위례,계산매개매심변화단적가속도화위이봉치변화솔,득도료일정적규률성,여매치심도종5m증대도50 m,츤체결구동력향응봉치대소하강교쾌。차외,환분석료매심증대대츤체결구내력봉치적영향。최후,제출재고열도지진구수건수도시기매치심도진가능불소우50 m,저위상관공정적수건제공료삼고의거。
According to a large number of findings on seismic hazards, the damages of tunnels during earthquakes depend on tunnel depth to a great extent. In order to study the effect of tunnel depth on lining, the earthquake responses of mountain tunnel in eight different depths are calculated by using the finite element method;and the seismic force loading method is verified, which confirms the rationality of the seismic load input method. In order to analyze the change of peak acceleration/displacement with increasing tunnel depth, the results of peak acceleration/displacement in both horizontal and vertical directions on key nodes of lining are extracted; and the influence of different tunnel depths on structural dynamic response is discussed. Some rules that the dynamic parameter peaks of lining decreased rapidly when the tunnel depth increases from 5 m to 50 m are found when calculating the ratio of peak acceleration/displacement on the section of different tunnel depths at vault. In addition, the influence of tunnel depth on peak internal force at tunnel vault is analyzed. And the comparative analysis between the results of the finite element calculation and the model test is made. Finally, the conclusion can be obtained that tunnel depth could not be less than 50 m when constructed in high-intensity earthquake zone, so as to provide reference for related projects.