岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
1期
25-34
,共10页
凌道盛%王筠%单振东%丁皓江
凌道盛%王筠%單振東%丁皓江
릉도성%왕균%단진동%정호강
非饱和多孔介质%瞬态响应%半解析解%精细时程积分
非飽和多孔介質%瞬態響應%半解析解%精細時程積分
비포화다공개질%순태향응%반해석해%정세시정적분
unsaturated porous media%transient response%semi-analytical solution%precise time-integration method
基于Zienkiewicz提出的非饱和多孔介质波动理论,考虑两相流体和固体颗粒的压缩性以及惯性、黏滞和机械耦合作用,采用半解析的方法获得了一类典型边界条件下单层非饱和多孔介质一维瞬态响应解。首先推导出无量纲化后以位移表示的控制方程,并将其写成矩阵形式;然后,将边界条件齐次化,求解控制方程所对应的特征值问题,得到了满足齐次边界条件的特征值和相对应的特征函数。根据变异系数法并利用特征函数的正交性,得到了一系列仅黏滞耦合的关于时间的二阶常微分方程及相应的初始条件。在此基础上,运用精细时程积分法给出了常微分方程组的数值解。最后,通过若干算例验证了结果的正确性并探讨了单层非饱和多孔介质一维瞬态动力响应的特点。该方法可推广应用于其他典型的边界条件。
基于Zienkiewicz提齣的非飽和多孔介質波動理論,攷慮兩相流體和固體顆粒的壓縮性以及慣性、黏滯和機械耦閤作用,採用半解析的方法穫得瞭一類典型邊界條件下單層非飽和多孔介質一維瞬態響應解。首先推導齣無量綱化後以位移錶示的控製方程,併將其寫成矩陣形式;然後,將邊界條件齊次化,求解控製方程所對應的特徵值問題,得到瞭滿足齊次邊界條件的特徵值和相對應的特徵函數。根據變異繫數法併利用特徵函數的正交性,得到瞭一繫列僅黏滯耦閤的關于時間的二階常微分方程及相應的初始條件。在此基礎上,運用精細時程積分法給齣瞭常微分方程組的數值解。最後,通過若榦算例驗證瞭結果的正確性併探討瞭單層非飽和多孔介質一維瞬態動力響應的特點。該方法可推廣應用于其他典型的邊界條件。
기우Zienkiewicz제출적비포화다공개질파동이론,고필량상류체화고체과립적압축성이급관성、점체화궤계우합작용,채용반해석적방법획득료일류전형변계조건하단층비포화다공개질일유순태향응해。수선추도출무량강화후이위이표시적공제방정,병장기사성구진형식;연후,장변계조건제차화,구해공제방정소대응적특정치문제,득도료만족제차변계조건적특정치화상대응적특정함수。근거변이계수법병이용특정함수적정교성,득도료일계렬부점체우합적관우시간적이계상미분방정급상응적초시조건。재차기출상,운용정세시정적분법급출료상미분방정조적수치해。최후,통과약간산례험증료결과적정학성병탐토료단층비포화다공개질일유순태동력향응적특점。해방법가추엄응용우기타전형적변계조건。
Based on the theory of unsaturated porous media proposed by Zienkiewicz, considering the inertia, viscous and mechanical couplings and the compressibility of fluid and solid particles, semi-analytical solutions for one-dimensional transient response of single-layer unsaturated porous media are obtained with the example of a typical boundary condition problem. During the solution procedure, the dimensionless displacement governing equations in matrix form are derived firstly. Then the the nonhomogeneous boundary conditions are transformed into homogeneous boundary conditions and the eigenvalue problems of the governing equations are solved. After that, the variation coefficient method and the orthogonality of the characteristics functions are utilized to obtain a series of ordinary differential equations with their initial conditions. Applying the precise time-integration method, the semi-analytical solutions of the ordinary differential equations are developed. Finally, several numerical examples are provided to prove the correctness of the present solution and investigate the features of one-dimensional transient response of unsaturated single-layer porous media. This method can be extended to any other boundary conditions.