风机技术
風機技術
풍궤기술
COMPRESSOR,BLOWER & FAN TECHNOLOGY
2014年
2期
29-35,40
,共8页
推力轴承%瓦块温度%油膜厚度%轴位移
推力軸承%瓦塊溫度%油膜厚度%軸位移
추력축승%와괴온도%유막후도%축위이
thrust bearing%titling-pad temperature%oil film thickness%axial displacement
推力轴承是离心压缩机的关键部件,其性能对压缩机的可靠性有决定性的影响。本文首先利用THRUST软件建立了可倾瓦止推轴承的三维模型,并考虑轴承瓦块、推力盘和油膜之间的流场-温度场-弹性变形的耦合,获得转子转速1500 r/min,2000r/min,2500 r/min,3000r/min 和3500r/min下可倾瓦推力轴承的油膜厚度、转子轴向位移及轴瓦温度。同时,建立试验装置并进行试验研究,最大轴承载荷为30000N。最后将试验结果与软件仿真结果相对比,发现模拟得出的瓦块温度和轴位移值与试验相吻合,从而证明THRUST软件的算法适用于本文研究的工况范围内的推力轴承的模拟,可为推力轴承的性能预测、优化设计及改造提供指导。
推力軸承是離心壓縮機的關鍵部件,其性能對壓縮機的可靠性有決定性的影響。本文首先利用THRUST軟件建立瞭可傾瓦止推軸承的三維模型,併攷慮軸承瓦塊、推力盤和油膜之間的流場-溫度場-彈性變形的耦閤,穫得轉子轉速1500 r/min,2000r/min,2500 r/min,3000r/min 和3500r/min下可傾瓦推力軸承的油膜厚度、轉子軸嚮位移及軸瓦溫度。同時,建立試驗裝置併進行試驗研究,最大軸承載荷為30000N。最後將試驗結果與軟件倣真結果相對比,髮現模擬得齣的瓦塊溫度和軸位移值與試驗相吻閤,從而證明THRUST軟件的算法適用于本文研究的工況範圍內的推力軸承的模擬,可為推力軸承的性能預測、優化設計及改造提供指導。
추력축승시리심압축궤적관건부건,기성능대압축궤적가고성유결정성적영향。본문수선이용THRUST연건건립료가경와지추축승적삼유모형,병고필축승와괴、추력반화유막지간적류장-온도장-탄성변형적우합,획득전자전속1500 r/min,2000r/min,2500 r/min,3000r/min 화3500r/min하가경와추력축승적유막후도、전자축향위이급축와온도。동시,건립시험장치병진행시험연구,최대축승재하위30000N。최후장시험결과여연건방진결과상대비,발현모의득출적와괴온도화축위이치여시험상문합,종이증명THRUST연건적산법괄용우본문연구적공황범위내적추력축승적모의,가위추력축승적성능예측、우화설계급개조제공지도。
Thrust bearing is the key component of centrifugal compressor, which performance has a decisive influence on the reliability of the compressor. This paper firstly uses the software-THRUST to establish three-dimensional model of titling-pad thrust bearing, and considers the coupling of flow field-temperature field-elastic deformation among the pad, the fluid film and the collar, to obtain the titling-pad temperature, oil film thickness and axial pad deformation under the rotor speed of 1500r/min, 2000r/min, 2500r/min, 3000r/min and 3500r/min. At the same time, the experiment device is established, which the largest bearing load is 30 000N. Finally, through comparing simulation results with experimental results, it is obtained that the pad temperature and axial displacement values of simulation is close to experimental results. Result of the study can provide theoretical guidance for the performance prediction, design optimization and transformation of the thrust bearing.