电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
4期
1003-1007
,共5页
王青平%赵宏宇%吴微微%付云起%袁乃昌
王青平%趙宏宇%吳微微%付雲起%袁迺昌
왕청평%조굉우%오미미%부운기%원내창
SAR图像%非局部空间信息%自适应搜索窗%相似性测度%贝叶斯分割%边缘区域矫正
SAR圖像%非跼部空間信息%自適應搜索窗%相似性測度%貝葉斯分割%邊緣區域矯正
SAR도상%비국부공간신식%자괄응수색창%상사성측도%패협사분할%변연구역교정
SAR image%Non-local spatial information%Adaptive search window%Similarity measure%Bayesian segmentation%Edge region rectification
传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应贝叶斯分割方法。针对SAR图像中的相干斑噪声模型,引入基于比率概率的相似性测度,用非局部相似像素块指导当前像素点的分割;并且采用变分系数(Coefficient of Variation, CV)方法获取边缘区域图像模板,在边缘区域自适应地调整定义的结构指数以及搜索窗尺寸,从而改善分割过度平滑与结构保持的矛盾;在实验分析中,利用新方法对部分图像进行了分割实验,并与传统方法作了比较。改进方法的分割结果形状更为准确,不但抑制了相干斑噪声,还有效保持了细节特征,具有显著优势。
傳統基于馬爾可伕隨機場(MRF)的貝葉斯分割方法由于隻攷慮鄰域像素點的先驗影響,無法有效抑製相榦斑譟聲;邊緣區域分割效果欠佳,因為先驗模型假定鄰域中每箇像素對中心像素的影響相同。因而,該文提齣一種融閤跼部和非跼部信息的自適應貝葉斯分割方法。針對SAR圖像中的相榦斑譟聲模型,引入基于比率概率的相似性測度,用非跼部相似像素塊指導噹前像素點的分割;併且採用變分繫數(Coefficient of Variation, CV)方法穫取邊緣區域圖像模闆,在邊緣區域自適應地調整定義的結構指數以及搜索窗呎吋,從而改善分割過度平滑與結構保持的矛盾;在實驗分析中,利用新方法對部分圖像進行瞭分割實驗,併與傳統方法作瞭比較。改進方法的分割結果形狀更為準確,不但抑製瞭相榦斑譟聲,還有效保持瞭細節特徵,具有顯著優勢。
전통기우마이가부수궤장(MRF)적패협사분할방법유우지고필린역상소점적선험영향,무법유효억제상간반조성;변연구역분할효과흠가,인위선험모형가정린역중매개상소대중심상소적영향상동。인이,해문제출일충융합국부화비국부신식적자괄응패협사분할방법。침대SAR도상중적상간반조성모형,인입기우비솔개솔적상사성측도,용비국부상사상소괴지도당전상소점적분할;병차채용변분계수(Coefficient of Variation, CV)방법획취변연구역도상모판,재변연구역자괄응지조정정의적결구지수이급수색창척촌,종이개선분할과도평활여결구보지적모순;재실험분석중,이용신방법대부분도상진행료분할실험,병여전통방법작료비교。개진방법적분할결과형상경위준학,불단억제료상간반조성,환유효보지료세절특정,구유현저우세。
With only considering the impact of neighborhood pixels, the traditional Bayesian segmentation method based on Markov Random Field (MRF) can not suppress the speckle noise effectively. In the traditional priori model, the influence of each pixel within the neighborhood to the center one is assumed the same, which makes the description of the edge imprecise and the segmentation ineffective. Thus, an adaptive Bayesian segmentation method fused of local and non-local information is proposed. For the multiplicative noise model contained in SAR image, the similarity measure based on ratio probability is introduced, and the nonlocal similar pixel-blocks are adopted to guide the segmentation of the current pixel. Furthermore, the Coefficient of Variation (CV) method is employed to obtain the image template of edge area. In the edge region, the structure index and the size of search window are adaptively adjusted to improve the inconsistency between excessive smooth and structure preserving. In the experimental analysis, parts of the SAR image segmentation results with the new technique are given, which are compared with the traditional means. There is a significant advantage that the proposed algorithm enables more accurate segmentation results, which not only make the speckle noise suppressed, but also keep the detail characteristics effectively.