电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
4期
974-980
,共7页
SAR图像分割%网格编码%快速区域合并%区域邻接图(RAG)%最近邻图(NNG)
SAR圖像分割%網格編碼%快速區域閤併%區域鄰接圖(RAG)%最近鄰圖(NNG)
SAR도상분할%망격편마%쾌속구역합병%구역린접도(RAG)%최근린도(NNG)
SAR image segmentation%Grid code%Fast region merging%Region Adjacency Graph (RAG)%Nearest Neighbor Graph (NNG)
该文建立一种新的基于八邻域网格编码的SAR图像分割模型,并用区域合并技术实现了模型的快速求解。利用多方向比例边缘检测算子提取SAR图像的比例边缘强度映射(RESM),提出一种新的阈值处理方法抑制RESM均质区域内部的极小值,进而减少了对阈值处理后的RESM进行分水岭变换获得的初始分割的区域个数。递归地合并相邻区域来求取分割模型的次优解。利用区域邻接图(RAG)及其最近邻图(NNG)特性来加速区域合并过程。引入精确度(P)和召回率(R)来评价分割算法的边缘定位精度。与常用方法相比,该文方法具有高的边缘定位精度和低的时间复杂度。
該文建立一種新的基于八鄰域網格編碼的SAR圖像分割模型,併用區域閤併技術實現瞭模型的快速求解。利用多方嚮比例邊緣檢測算子提取SAR圖像的比例邊緣彊度映射(RESM),提齣一種新的閾值處理方法抑製RESM均質區域內部的極小值,進而減少瞭對閾值處理後的RESM進行分水嶺變換穫得的初始分割的區域箇數。遞歸地閤併相鄰區域來求取分割模型的次優解。利用區域鄰接圖(RAG)及其最近鄰圖(NNG)特性來加速區域閤併過程。引入精確度(P)和召迴率(R)來評價分割算法的邊緣定位精度。與常用方法相比,該文方法具有高的邊緣定位精度和低的時間複雜度。
해문건립일충신적기우팔린역망격편마적SAR도상분할모형,병용구역합병기술실현료모형적쾌속구해。이용다방향비례변연검측산자제취SAR도상적비례변연강도영사(RESM),제출일충신적역치처리방법억제RESM균질구역내부적겁소치,진이감소료대역치처리후적RESM진행분수령변환획득적초시분할적구역개수。체귀지합병상린구역래구취분할모형적차우해。이용구역린접도(RAG)급기최근린도(NNG)특성래가속구역합병과정。인입정학도(P)화소회솔(R)래평개분할산법적변연정위정도。여상용방법상비,해문방법구유고적변연정위정도화저적시간복잡도。
A new SAR image partition model is constructed based on 8-neighbor grid code, which is fast solved by region merging. Utilizing multi-direction ratio edge detector to construct Ratio Edge Strength Map (RESM) of SAR image, a novel thresholding method is proposed to suppress the minima value in the homogeneous region of RESM, which reduces the number of regions in an initial partition produced by watershed of the thresholding processed RESM. Sub-optimization of the partition model is obtained by merging adjacent region pair iteratively. Region Adjacency Graph (RAG) and its Nearest Neighbor Graph (NNG) characteristic are used to speed up the proceeding of region merging. Precision (P ) and Recall (R) are introduced to evaluate the boundary localization precision of segmentation methods. Compared with three widely used methods, the proposed method has higher boundary localization precision and lower computational complexity.