电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
4期
834-839
,共6页
张波%刘郁林%王开%王娇
張波%劉鬱林%王開%王嬌
장파%류욱림%왕개%왕교
无线传感器网络%压缩感知%稀疏测量矩阵%数据收集
無線傳感器網絡%壓縮感知%稀疏測量矩陣%數據收集
무선전감기망락%압축감지%희소측량구진%수거수집
Wireless Sensor Networks (WSNs)%Compressed Sensing (CS)%Sparse measurement matrix%Data gathering
测量矩阵设计是应用压缩感知理论解决实际问题的关键。该文针对无线传感器网络压缩数据收集问题设计了一种概率稀疏随机矩阵。该矩阵可在减少参与投影值计算节点个数的同时,让参与投影值计算的节点分布集中化,从而降低数据收集的通信能耗。在此基础上,为提高网络数据重构精度,又提出一种适用于概率稀疏随机矩阵优化的测量矩阵优化算法。仿真实验结果表明,与稀疏随机矩阵和稀疏 Toeplitz 测量矩阵相比,采用优化的概率稀疏随机矩阵作为压缩数据收集的测量矩阵可显著降低通信能耗,且重构误差更小。
測量矩陣設計是應用壓縮感知理論解決實際問題的關鍵。該文針對無線傳感器網絡壓縮數據收集問題設計瞭一種概率稀疏隨機矩陣。該矩陣可在減少參與投影值計算節點箇數的同時,讓參與投影值計算的節點分佈集中化,從而降低數據收集的通信能耗。在此基礎上,為提高網絡數據重構精度,又提齣一種適用于概率稀疏隨機矩陣優化的測量矩陣優化算法。倣真實驗結果錶明,與稀疏隨機矩陣和稀疏 Toeplitz 測量矩陣相比,採用優化的概率稀疏隨機矩陣作為壓縮數據收集的測量矩陣可顯著降低通信能耗,且重構誤差更小。
측량구진설계시응용압축감지이론해결실제문제적관건。해문침대무선전감기망락압축수거수집문제설계료일충개솔희소수궤구진。해구진가재감소삼여투영치계산절점개수적동시,양삼여투영치계산적절점분포집중화,종이강저수거수집적통신능모。재차기출상,위제고망락수거중구정도,우제출일충괄용우개솔희소수궤구진우화적측량구진우화산법。방진실험결과표명,여희소수궤구진화희소 Toeplitz 측량구진상비,채용우화적개솔희소수궤구진작위압축수거수집적측량구진가현저강저통신능모,차중구오차경소。
Designing measurement matrix is one of the key points of applying Compressed Sensing (CS) to solve practical issue. In this paper, a kind of probabilistic sparse random matrix is designed for compressive data gathering in Wireless Sensor Networks (WSNs). Besides cutting the number of projection calculating nodes, the probabilistic sparse random matrices also make their location centralized, which leads a further reduction of communication overhead. Then, an optimization method for probabilistic sparse random matrices is also proposed to enhance the accuracy of network data reconstruction. Compared with the existing data gathering method using sparse random matrices and sparse Toeplitz matrices, the proposed method can reduce significantly not only the energy consumption, but also the reconstruction error.