长沙理工大学学报:自然科学版
長沙理工大學學報:自然科學版
장사리공대학학보:자연과학판
Journal of Changsha University of Science and Technology:Natural Science
2012年
4期
53-57
,共5页
欧伦伟%刘辉%张杰%彭善华
歐倫偉%劉輝%張傑%彭善華
구륜위%류휘%장걸%팽선화
模拟退火%Levenberg-Marquardt连续型小波神经网络%模拟电路故障诊断
模擬退火%Levenberg-Marquardt連續型小波神經網絡%模擬電路故障診斷
모의퇴화%Levenberg-Marquardt련속형소파신경망락%모의전로고장진단
simulated annealing%Levenberg-Marquardt WNN%analog circuit fault diagnosis
针对连续紧凑型小波神经网络(WNN)收敛速度慢问题,提出了用Levenberg-Marquardt(LM)算法改进的小波神经网络LM-WNN.为了克服LM-WNN由于收敛速度过快易陷入局部最小点和平台的缺点,利用模拟退火(SA)算法对小波神经网络的参数进行优化,得到一组接近全局最小值的近似解,把近似解作为小波神经网络权值和阈值矩阵的初始值,以确保LM-WNN收敛于全局最小点.把SA-LM-WNN用于模拟电路故障诊断,仿真结果表明,该算法能够快速收敛于全局最小点,仿真效果较好.
針對連續緊湊型小波神經網絡(WNN)收斂速度慢問題,提齣瞭用Levenberg-Marquardt(LM)算法改進的小波神經網絡LM-WNN.為瞭剋服LM-WNN由于收斂速度過快易陷入跼部最小點和平檯的缺點,利用模擬退火(SA)算法對小波神經網絡的參數進行優化,得到一組接近全跼最小值的近似解,把近似解作為小波神經網絡權值和閾值矩陣的初始值,以確保LM-WNN收斂于全跼最小點.把SA-LM-WNN用于模擬電路故障診斷,倣真結果錶明,該算法能夠快速收斂于全跼最小點,倣真效果較好.
침대련속긴주형소파신경망락(WNN)수렴속도만문제,제출료용Levenberg-Marquardt(LM)산법개진적소파신경망락LM-WNN.위료극복LM-WNN유우수렴속도과쾌역함입국부최소점화평태적결점,이용모의퇴화(SA)산법대소파신경망락적삼수진행우화,득도일조접근전국최소치적근사해,파근사해작위소파신경망락권치화역치구진적초시치,이학보LM-WNN수렴우전국최소점.파SA-LM-WNN용우모의전로고장진단,방진결과표명,해산법능구쾌속수렴우전국최소점,방진효과교호.
To solve the continuous and compact wavelet neural network(WNN)'s slow con- vergence speed problem, the Levenberg-Marquardt (LM) algorithm is proposed to improve the WNN, and in order to overcome the LM-WNN's shortcomings that it has too fast con- vergence speed, which make it easily trapped in local minimum points and platform, simu- lated annealing (SA)algorithm is used to optimize the parameters of the wavelet neural net- work, which results a group of approximate solution. The approximate solution is put as the initial value of weights and threshold matrix of the LM-WNN ,to ensure that the LM- WNN converge to the global minimum point. Apply the SA-LM-WNN in analog circuit fault diagnosis problem, simulation results show that the algorithm can quickly converge to the global minimum, and the simulation effect is good.