海南师范大学学报:自然科学版
海南師範大學學報:自然科學版
해남사범대학학보:자연과학판
Journal of Hainan Normal University:Natural Science
2012年
4期
382-385
,共4页
分数阶微分方程%分数阶微分%分数阶积分%Green函数%广义Gronwall不等式
分數階微分方程%分數階微分%分數階積分%Green函數%廣義Gronwall不等式
분수계미분방정%분수계미분%분수계적분%Green함수%엄의Gronwall불등식
Fractional differential equation%Fractional order derivative%Fractional order integral%Green's function%Generalized Gronwall inequality
研究下列分数阶微积分方程的边值问题:{Dαu(t)=f()t,u(t)+∫0k()s,u(s)ds,5〈α〈6,0≤t≤1u(1)=limt→o(t)t2-α=0通过运用Schauder不动点定理和广义Gronwall不等式,给出了解的存在性和唯一性的充分条件.
研究下列分數階微積分方程的邊值問題:{Dαu(t)=f()t,u(t)+∫0k()s,u(s)ds,5〈α〈6,0≤t≤1u(1)=limt→o(t)t2-α=0通過運用Schauder不動點定理和廣義Gronwall不等式,給齣瞭解的存在性和唯一性的充分條件.
연구하렬분수계미적분방정적변치문제:{Dαu(t)=f()t,u(t)+∫0k()s,u(s)ds,5〈α〈6,0≤t≤1u(1)=limt→o(t)t2-α=0통과운용Schauder불동점정리화엄의Gronwall불등식,급출료해적존재성화유일성적충분조건.
The following boundary value problem of fractional integro-differential equation {Dαu(t)=f()t,u(t)+∫0k()s,u(s)ds,5〈α〈6,0≤t≤1u(1)=limt→o(t)t2-α=0 was studied by using the Sehauder fixed point theorem and the generalized Gronwall inequality, we give a suffcient condition for the existenee and uniqueness of the solution.