吉首大学学报:自然科学版
吉首大學學報:自然科學版
길수대학학보:자연과학판
Journal of Jishou University(Natural Science Edition)
2012年
5期
19-22
,共4页
零压流体运动方程组%局部结构%退化点%非退化点
零壓流體運動方程組%跼部結構%退化點%非退化點
령압류체운동방정조%국부결구%퇴화점%비퇴화점
zero-pressure flow equations%local structure%degenerate point%non-degenerate point
研究1维零压流体运动方程组,引进势函数并讨论它的最小值点.当初值(x,t)∈R×(0,∞)时,得出解的局部结构的以下结论.若势函数有唯一非退化最小值点,则(x,t)附近的解光滑;若势函数有2个以上非退化最小值点或唯一退化最小值点,则(x,t)附近的解间断.
研究1維零壓流體運動方程組,引進勢函數併討論它的最小值點.噹初值(x,t)∈R×(0,∞)時,得齣解的跼部結構的以下結論.若勢函數有唯一非退化最小值點,則(x,t)附近的解光滑;若勢函數有2箇以上非退化最小值點或唯一退化最小值點,則(x,t)附近的解間斷.
연구1유령압류체운동방정조,인진세함수병토론타적최소치점.당초치(x,t)∈R×(0,∞)시,득출해적국부결구적이하결론.약세함수유유일비퇴화최소치점,칙(x,t)부근적해광활;약세함수유2개이상비퇴화최소치점혹유일퇴화최소치점,칙(x,t)부근적해간단.
This paper is concerned with one-dimensional zero-pressure flow equations. By introducing a potential function and discussing its minimizing point, the following conclusions on the local structure of the solution are drawn for each point (x, t)∈RX (0, ∞). When potential function has a uniqe non-degenerate minimizing point, solutions are smooth in the neighborhood of (x, t) ;When potential function has more than two non-degenerate minimizing points or a uniqe degenerate minimizing point, solutions are discontinuous in the neighborhood of (x ,t).