贵州师范学院学报
貴州師範學院學報
귀주사범학원학보
JOURNAL OF GUIZHOU EDUCATIONAL INSTITUTE
2012年
12期
10-12
,共3页
有限保序夹心半群OT(X.Y%θ)%正则元%幂等元
有限保序夾心半群OT(X.Y%θ)%正則元%冪等元
유한보서협심반군OT(X.Y%θ)%정칙원%멱등원
finite ordered- preserving sandwich semigroup OT( X,Y%θ)%regulations%idempotents
设X,y任意的非空全序集合,OT(X,Y)是X到Y的全体保序映射构成的集合,0是Y到X的一个确定的保序映射.Va,B∈OT(X,y)定义:旺B=aθB,这里aθB表示一般映射的合成,则OT(X,Y)关于运算。构成一个半群,称为保序的夹心半群,记为OT(X,Y;O).当X,Y都是有限集合且{X}〉1,{Y}〉1时称保序夹心半群OT(X,Y;O)为有限保序夹心半群.主要讨论有限保序夹心半群正则元、幂等元的一些特殊性质.
設X,y任意的非空全序集閤,OT(X,Y)是X到Y的全體保序映射構成的集閤,0是Y到X的一箇確定的保序映射.Va,B∈OT(X,y)定義:旺B=aθB,這裏aθB錶示一般映射的閤成,則OT(X,Y)關于運算。構成一箇半群,稱為保序的夾心半群,記為OT(X,Y;O).噹X,Y都是有限集閤且{X}〉1,{Y}〉1時稱保序夾心半群OT(X,Y;O)為有限保序夾心半群.主要討論有限保序夾心半群正則元、冪等元的一些特殊性質.
설X,y임의적비공전서집합,OT(X,Y)시X도Y적전체보서영사구성적집합,0시Y도X적일개학정적보서영사.Va,B∈OT(X,y)정의:왕B=aθB,저리aθB표시일반영사적합성,칙OT(X,Y)관우운산。구성일개반군,칭위보서적협심반군,기위OT(X,Y;O).당X,Y도시유한집합차{X}〉1,{Y}〉1시칭보서협심반군OT(X,Y;O)위유한보서협심반군.주요토론유한보서협심반군정칙원、멱등원적일사특수성질.
Let X and Y be arbitrary nonempty order sets, OT(X, Y) be the set of mappings from X to Y, θ be ar- bitrary but fixed mapping from Y to X for any V a,BE OT(X, Y) , the operation in OT( X, Y) is defined by a~/3 = a0/3 ,where a0/3 is the production of mappings. Then OT(X, Y) forms a semigroup called sandwich semigroup and de- noted by OT(X, Y) . The sandwich semigroup OT( X, Y) is called finite preserving order sandwich semigroup when both X and Y are finite sets and { X } 〉 1, { Y } 〉 1. In this paper, we discuss the regulations and idempotent proper- ties of OT( X, Y;θ)