计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2013年
8期
181-184
,共4页
混沌%自适应变异%粒子群%模拟退火%RBF神经网络%目标检测
混沌%自適應變異%粒子群%模擬退火%RBF神經網絡%目標檢測
혼돈%자괄응변이%입자군%모의퇴화%RBF신경망락%목표검측
chaos%adaptive mutation%particle swarm%simulated annealing%RBF neural network%target detection
为了更精确地检测出混沌背景下的微弱目标信号,提高预测效果,文中提出了一种混沌混合粒子群优化RBF神经网络(CHPSO-RBFNN)算法。本算法主要采用了基于群体自适应变异和个体退火操作的混沌粒子群优化RBF神经网络,利用群体自适应变异以及个体退火操作优化混沌粒子群,有效地提高了粒子群算法的全局收敛性,优化了RBF神经网络的结构和参数。把该算法用于预测混沌时间序列、检测混沌背景下微弱目标信号,实验结果表明本算法有良好的非线性预测能力,可以有效地检测出混沌背景下的微弱目标信号。
為瞭更精確地檢測齣混沌揹景下的微弱目標信號,提高預測效果,文中提齣瞭一種混沌混閤粒子群優化RBF神經網絡(CHPSO-RBFNN)算法。本算法主要採用瞭基于群體自適應變異和箇體退火操作的混沌粒子群優化RBF神經網絡,利用群體自適應變異以及箇體退火操作優化混沌粒子群,有效地提高瞭粒子群算法的全跼收斂性,優化瞭RBF神經網絡的結構和參數。把該算法用于預測混沌時間序列、檢測混沌揹景下微弱目標信號,實驗結果錶明本算法有良好的非線性預測能力,可以有效地檢測齣混沌揹景下的微弱目標信號。
위료경정학지검측출혼돈배경하적미약목표신호,제고예측효과,문중제출료일충혼돈혼합입자군우화RBF신경망락(CHPSO-RBFNN)산법。본산법주요채용료기우군체자괄응변이화개체퇴화조작적혼돈입자군우화RBF신경망락,이용군체자괄응변이이급개체퇴화조작우화혼돈입자군,유효지제고료입자군산법적전국수렴성,우화료RBF신경망락적결구화삼수。파해산법용우예측혼돈시간서렬、검측혼돈배경하미약목표신호,실험결과표명본산법유량호적비선성예측능력,가이유효지검측출혼돈배경하적미약목표신호。
In order to detect the weak target signal accurately in the chaos background, and improve forecast result, a novel algorithm based on RBF Neural Network ( RBFNN) with Chaotic Hybrid Particle Swarm Optimization ( CHPSO) is presented. In this algorithm, the RBF neural network is optimized by chaotic particle swarm optimization with adaptive population mutation and individual annealing operation. In order to improve the global convergence ability of PSO,the colony adaptive mutation and individual annealing operation are used to adjust and optimize PSO. Then the parameters and structures of RBFNN are optimized. This novel algorithm is applied to predict chaotic time sequence and detect weak target signal in the chaos background. Simulation results show that the algorithm has preferable nonlinear prediction ability and can detect weak target signal effectively.