计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
1期
55-58,62
,共5页
协作过滤%个性化推荐%基于用户%兴趣模型%家庭用户%冷启动
協作過濾%箇性化推薦%基于用戶%興趣模型%傢庭用戶%冷啟動
협작과려%개성화추천%기우용호%흥취모형%가정용호%랭계동
collaborative filtering%personalized recommendation%user-based%interest model%home user%cold-start
在海量网络资源中,用户为了寻找喜欢的视频往往需要进行频繁操作,个性化推荐服务可以有效解决该问题,但当前推荐服务准确度较低,为此,提出一种基于协作过滤的改进推荐方法。根据相似用户群,即邻居集的点播记录确定当前用户的推荐电影子集,挖掘当前用户的喜好,建立兴趣模型,并与推荐子集中的电影进行匹配,按匹配度高低进行推荐。对推荐电影子集进行分类,以适应家庭中多用户观看的情况。另外在系统运行初期采用相似影片的推荐以一定程度地缓解冷启动问题。实验结果表明,与现有协作过滤算法相比,改进推荐方法的推荐准确度有明显提高。
在海量網絡資源中,用戶為瞭尋找喜歡的視頻往往需要進行頻繁操作,箇性化推薦服務可以有效解決該問題,但噹前推薦服務準確度較低,為此,提齣一種基于協作過濾的改進推薦方法。根據相似用戶群,即鄰居集的點播記錄確定噹前用戶的推薦電影子集,挖掘噹前用戶的喜好,建立興趣模型,併與推薦子集中的電影進行匹配,按匹配度高低進行推薦。對推薦電影子集進行分類,以適應傢庭中多用戶觀看的情況。另外在繫統運行初期採用相似影片的推薦以一定程度地緩解冷啟動問題。實驗結果錶明,與現有協作過濾算法相比,改進推薦方法的推薦準確度有明顯提高。
재해량망락자원중,용호위료심조희환적시빈왕왕수요진행빈번조작,개성화추천복무가이유효해결해문제,단당전추천복무준학도교저,위차,제출일충기우협작과려적개진추천방법。근거상사용호군,즉린거집적점파기록학정당전용호적추천전영자집,알굴당전용호적희호,건립흥취모형,병여추천자집중적전영진행필배,안필배도고저진행추천。대추천전영자집진행분류,이괄응가정중다용호관간적정황。령외재계통운행초기채용상사영편적추천이일정정도지완해랭계동문제。실험결과표명,여현유협작과려산법상비,개진추천방법적추천준학도유명현제고。
Users looking for a favorite video in vast amounts of network resources often need frequent operating, and personalized recommendation service can be an effective solution to this problem. Against the current lower recommendation accuracy, this paper presents an improved recommendation method based on collaborative filtering. It determines a movies subset that is recommended according to the past records of similar users namely neighbors set. Then it mines the preferences of current user, establishes the interest model of current user, and matches with the movies to recommend. Recommendation is in accordance with the level of matching degree. Afterwards, it classifies the film sets that are recommended to adapt to multi-user viewing in families. Additionally, it recommends similar films in the system early running to solve the cold-start problem in a certain degree. Experimental results show that the improved recommended method has distinct higher recommendation accuracy than the existing collaborative filtering algorithm.