电脑知识与技术
電腦知識與技術
전뇌지식여기술
COMPUTER KNOWLEDGE AND TECHNOLOGY
2013年
22期
5064-5067
,共4页
聚类分析%差分进化%K-均值聚类算法%Laplace分布%Logistic混沌搜索
聚類分析%差分進化%K-均值聚類算法%Laplace分佈%Logistic混沌搜索
취류분석%차분진화%K-균치취류산법%Laplace분포%Logistic혼돈수색
cluster analysis%differential evolution%k-means cluster algorithm%Laplace distribution%Logistic chaotic searching
针对K-均值算法对初始值敏感和易陷入局部最优的缺点,提出了一种基于改进差分进化的K-均值聚类算法。该算法通过引入基于Laplace分布的变异算子和Logistic变尺度混沌搜索来增强全局寻优能力。实验结果表明,该算法能够较好地克服传统K-均值算法的缺点,具有较好的搜索能力,且算法的收敛速度较快,鲁棒性较强。
針對K-均值算法對初始值敏感和易陷入跼部最優的缺點,提齣瞭一種基于改進差分進化的K-均值聚類算法。該算法通過引入基于Laplace分佈的變異算子和Logistic變呎度混沌搜索來增彊全跼尋優能力。實驗結果錶明,該算法能夠較好地剋服傳統K-均值算法的缺點,具有較好的搜索能力,且算法的收斂速度較快,魯棒性較彊。
침대K-균치산법대초시치민감화역함입국부최우적결점,제출료일충기우개진차분진화적K-균치취류산법。해산법통과인입기우Laplace분포적변이산자화Logistic변척도혼돈수색래증강전국심우능력。실험결과표명,해산법능구교호지극복전통K-균치산법적결점,구유교호적수색능력,차산법적수렴속도교쾌,로봉성교강。
The conventional k-means algorithms are sensitive to the initial cluster centers, and tend to be trapped by local opti-ma. To resolve these problems, a novel k-means clustering algorithm using enhanced differential evolution technique is proposed in this paper. This algorithm improves the global search ability by applying Laplace mutation operator and variable-scale Logistic chaotic searching. Numerical experiments show that this algorithm overcomes the disadvantages of the conventional k-means al-gorithms, and improves search ability with higher accuracy, faster convergence speed and better robustness.