航天返回与遥感
航天返迴與遙感
항천반회여요감
SPACECRAFT RECOVERY & REMOTE SENSING
2013年
5期
7-13
,共7页
马洋%荣伟%江长虹%张青斌%霍霖
馬洋%榮偉%江長虹%張青斌%霍霖
마양%영위%강장홍%장청빈%곽림
返回舱%代理模型%高超声速%多目标多约束优化
返迴艙%代理模型%高超聲速%多目標多約束優化
반회창%대리모형%고초성속%다목표다약속우화
reentry capsule%surrogate model%hypersonic%multi-objective and multi-constraint optimiza-tion
针对返回舱再入过程中需要满足的复杂气动力热条件,在典型高超声速条件下以升阻比和阻力系数为目标,以驻点热流和容积率为约束条件进行返回舱外形多目标优化设计。气动特性分析采用基于三维Navier-Stokes方程和结构网格的计算流体力学数值仿真(CFD)方法,采用Fay-Riddell经验公式计算驻点热流,采用NSGA-II优化算法进行全局寻优,为了增强多目标优化设计的计算效率,利用Kriging代理模型替代CFD计算,并引入改进的EI函数加点策略,大大减少了构建代理模型时所需的样本点数目。优化计算结果表明,代理模型计算结果与CFD计算结果误差可以控制在7%以内,基于代理模型技术的优化过程可以节省95%以上的计算开销。因此,该方法能够较好地满足初步设计的要求,为返回舱外形优化提供有益的借鉴。
針對返迴艙再入過程中需要滿足的複雜氣動力熱條件,在典型高超聲速條件下以升阻比和阻力繫數為目標,以駐點熱流和容積率為約束條件進行返迴艙外形多目標優化設計。氣動特性分析採用基于三維Navier-Stokes方程和結構網格的計算流體力學數值倣真(CFD)方法,採用Fay-Riddell經驗公式計算駐點熱流,採用NSGA-II優化算法進行全跼尋優,為瞭增彊多目標優化設計的計算效率,利用Kriging代理模型替代CFD計算,併引入改進的EI函數加點策略,大大減少瞭構建代理模型時所需的樣本點數目。優化計算結果錶明,代理模型計算結果與CFD計算結果誤差可以控製在7%以內,基于代理模型技術的優化過程可以節省95%以上的計算開銷。因此,該方法能夠較好地滿足初步設計的要求,為返迴艙外形優化提供有益的藉鑒。
침대반회창재입과정중수요만족적복잡기동력열조건,재전형고초성속조건하이승조비화조력계수위목표,이주점열류화용적솔위약속조건진행반회창외형다목표우화설계。기동특성분석채용기우삼유Navier-Stokes방정화결구망격적계산류체역학수치방진(CFD)방법,채용Fay-Riddell경험공식계산주점열류,채용NSGA-II우화산법진행전국심우,위료증강다목표우화설계적계산효솔,이용Kriging대리모형체대CFD계산,병인입개진적EI함수가점책략,대대감소료구건대리모형시소수적양본점수목。우화계산결과표명,대리모형계산결과여CFD계산결과오차가이공제재7%이내,기우대리모형기술적우화과정가이절성95%이상적계산개소。인차,해방법능구교호지만족초보설계적요구,위반회창외형우화제공유익적차감。
This paper investigates the multi-object optimization design of reentry capsule configuration under typical hypersonic conditions, aiming at satisfying the complex aerodynamic heating conditions that arise during reentry, where the lift-drag ratio and drag coefficient are the two objects with the constraints of the stagnation point heat flux and volume efficiency. The NSGA-II is utilized to perform the multi-object configu-ration optimization. For a given set of configuration parameters generated by the NSGA-II, the three-dimension Navier-Stokes(NS) equation and structure grid Computational Fluid Dynamics(CFD) method are used to com-pute the lift-drag ratio and drag coefficient, and the Fay-Riddell empirical formula is used to estimate stagna-tion point heat flux. To improve the computational efficiency, the Kriging surrogate model, with a modified Expected Improvement(EI) sampling strategy to reduce the sample number, is used to replace the CFD compu-tation during the optimization. The optimized results indicate that the Kriging surrogate model can reduce about 95% computational cost and the resultant errors are within 7% when compared with the CFD. Thus, the pro-posed method can be used as a preliminary design tool for reentry capsule configuration optimization.