山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2013年
11期
105-110
,共6页
相似性计算%均模型%推荐系统%基于Item的协同过滤
相似性計算%均模型%推薦繫統%基于Item的協同過濾
상사성계산%균모형%추천계통%기우Item적협동과려
similarity computing%mean model%recommendation system%item-based collaborative filtering
基于项目的协同过滤( item-based collaborative filtering, IBCF)算法推荐精度高,实现简单,易于用于实际系统,然而因Item向量过长,计算相似性十分耗时。针对这一问题,从Item向量过长入手,提出了一种均模型表示Item向量的方法,缩短计算相似性的时间。在Movie Lens数据集上进行对比,实验表明,该算法在推荐精度基本保证的情况下,能有效缩短计算时间,降低时间复杂度。此外,本文还指出上述优化相似性计算方法可进一步优化来提高推荐精度和满足实际应用要求。
基于項目的協同過濾( item-based collaborative filtering, IBCF)算法推薦精度高,實現簡單,易于用于實際繫統,然而因Item嚮量過長,計算相似性十分耗時。針對這一問題,從Item嚮量過長入手,提齣瞭一種均模型錶示Item嚮量的方法,縮短計算相似性的時間。在Movie Lens數據集上進行對比,實驗錶明,該算法在推薦精度基本保證的情況下,能有效縮短計算時間,降低時間複雜度。此外,本文還指齣上述優化相似性計算方法可進一步優化來提高推薦精度和滿足實際應用要求。
기우항목적협동과려( item-based collaborative filtering, IBCF)산법추천정도고,실현간단,역우용우실제계통,연이인Item향량과장,계산상사성십분모시。침대저일문제,종Item향량과장입수,제출료일충균모형표시Item향량적방법,축단계산상사성적시간。재Movie Lens수거집상진행대비,실험표명,해산법재추천정도기본보증적정황하,능유효축단계산시간,강저시간복잡도。차외,본문환지출상술우화상사성계산방법가진일보우화래제고추천정도화만족실제응용요구。
The item-based collaborative filtering algorithm (IBCF),a recommendation algorithm with high precision, simple and easy to use in actual system, is widely used in the field of recommendation systems.But it meets a higher computational time complexity for similar calculation because of the long length of item vector.In this paper, a sampled approach firstly is suggested to represent an item vector called mean model item vector representation through analyzing theory of IBCF algorithm, to solve the problem of the long length of item vector and cut down the computational time. Experiments using Movie Lens datasets show that the algorithm is very efficient to cut down the computational time on the premise of accuracy.Furthermore, some right sampling methods can be used to optimize the calculation method of similarity in order to meet practical application requirement.