计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2013年
11期
187-190
,共4页
小波%阈值去噪%数学形态学%边缘检测
小波%閾值去譟%數學形態學%邊緣檢測
소파%역치거조%수학형태학%변연검측
Wavelet%Threshold denoising%Mathematical morphology%Edge detection
针对肺部图像的噪声问题,采用基于小波变换的阈值去噪方法去噪。在数学形态学边缘检测的基础上,选取适合肺部图像的全方位和多尺度结构元素,采用改进的形态学边缘检测算子对去噪前后的图像进行边缘检测,并给出MATLAB软件编程实现方法和核心程序。最后将所提算法对去噪前后的图像边缘检测结果进行比较。结果显示去噪后图像的峰值信噪比( PSNR )和均方误差MSE都比去噪前有明显改善,表明采用的算法不但能有效地去除噪声,同时还能保留边缘的细节,检测出更光滑、清晰的肺部图像边缘。结果也证明了小波阈值去噪联合数学形态学对肺部病灶图像进行边缘检测的有效性。
針對肺部圖像的譟聲問題,採用基于小波變換的閾值去譟方法去譟。在數學形態學邊緣檢測的基礎上,選取適閤肺部圖像的全方位和多呎度結構元素,採用改進的形態學邊緣檢測算子對去譟前後的圖像進行邊緣檢測,併給齣MATLAB軟件編程實現方法和覈心程序。最後將所提算法對去譟前後的圖像邊緣檢測結果進行比較。結果顯示去譟後圖像的峰值信譟比( PSNR )和均方誤差MSE都比去譟前有明顯改善,錶明採用的算法不但能有效地去除譟聲,同時還能保留邊緣的細節,檢測齣更光滑、清晰的肺部圖像邊緣。結果也證明瞭小波閾值去譟聯閤數學形態學對肺部病竈圖像進行邊緣檢測的有效性。
침대폐부도상적조성문제,채용기우소파변환적역치거조방법거조。재수학형태학변연검측적기출상,선취괄합폐부도상적전방위화다척도결구원소,채용개진적형태학변연검측산자대거조전후적도상진행변연검측,병급출MATLAB연건편정실현방법화핵심정서。최후장소제산법대거조전후적도상변연검측결과진행비교。결과현시거조후도상적봉치신조비( PSNR )화균방오차MSE도비거조전유명현개선,표명채용적산법불단능유효지거제조성,동시환능보류변연적세절,검측출경광활、청석적폐부도상변연。결과야증명료소파역치거조연합수학형태학대폐부병조도상진행변연검측적유효성。
Aiming at the problem of noise in lung image , we use wavelet transform-based threshold denoising method to eliminate the noise.Then on the basis of mathematical morphology edge detection , by choosing the omnidirectional and multi-scale structural elements fit-ting the lung image , and using the improved morphological edge detection operators , we carry out edge detection on the images with noise and after denoising, and provide the implementation method and core program with MATLAB software programming .At last, we compare the pro-posed algorithm with the edge detection results of noisy image and denoised image .The results show that the peak signal-to-noise ratio ( PSNR) and the mean squared error ( MSE) of the denoised image have a significant improvement than the noisy image has , this illustrates that the algorithm used in this paper can effectively remove the noise while preserving the edge detail , and can detect the lung image with smoother and clearer edges .This also proves that the method of wavelet threshold denoising in conjunction with mathematical morphology is effective in edge detection of the lung lesions image.